
An End-to-End QoS Mechanism for Grid Bulk Data
Transfer for Supporting Virtualization∗

Kashif Munir1, Somera Javed2, Michael Welzl1, Humaira Ehsan2, Tooba Javed2

1 Institute for Computer Science, University of Innsbruck, Austria

{Kashif.Munir, Michael.Welzl}@uibk.ac.at
2 National University of Computer and Emerging Sciences, Islamabad, Pakistan

Abstract. We consider sustainable and deterministic QoS a key ingredient for
providing virtualization and hence introduce an end-to-end Quality of Service
mechanism for Grid bulk data transfers. Our mechanism enables per-flow
guarantees and efficiently utilizes available resources without requiring any
router support except for the provisioning of a single high class traffic
aggregate. This is attained by taking the specific requirements and environment
conditions in common Grids into account. We document simulation results
which illustrate how guarantees are realized by applying admission control, and
by uniformly using a max-min fair congestion control mechanism for all flows.

Keywords: Quality of Service, QoS, Grid, Bulk Data Transfer, Advance
Reservation, UDT

1 Introduction

Grid computing enables the virtualization of distributed computing and data resources
such as processing, storage capacity and network bandwidth to provide a user with a
unified view of the system. It is therefore a major effort in Grid computing to hide
some of the complexity from the programmers of Grid applications, which requires
mechanisms to be in place for automatically distributing parts of applications − so-
called “schedulers”, which work best if the underlying system exhibits a deterministic
behavior. This can be attained by reserving resources such as CPUs and memory on
machines (“Advance Reservation”); the underlying connection infrastructure being
the Internet (or a specific part thereof), fully deterministic behavior can only be seen
if such reservations include the network. These reservations have properties which
make them somewhat different from the classical per-flow guarantees that have been
demanded for multimedia services – the service may not be used immediately after its
reservation and the flows are elastic.

Realizing such per-flow QoS guarantees is not easy. Even when fine-grain QoS
mechanisms like IntServ/RSVP would be available, providing them is an effort for an
ISP, meaning that it will not be done for free. On the other hand, differentiating

∗ The work described in this paper is supported by the Higher Education Commission (HEC)
of Pakistan under the doctoral fellowship program for Austria.

between a protected traffic aggregate and “all other traffic” is much easier, and can
for instance be done by switching a pre-configured type of traffic (with classification
via the DSCP, for instance) onto a leased line with MPLS or by treating it as
“Expedited Forwarding" (EF) traffic with DiffServ. This is all the support that we
foresee from the ISP side in our mechanism. Note that, at this point, we exploit
property 3 above: with no additional control of routers, path changes can always
cause reservations to fail. Assuming that path changes are rare events, and the failure
to provide a guarantee is not as severe as in the standard case of an end user
requesting a multimedia service, we decided to accept this downside of our
mechanism.

In order to guarantee fine-grain QoS, traffic within the protected aggregate must be
controlled − but, rather than involving routers, this can be done at the end systems by
communicating with a Resource Broker (a common service in Grids where one can,
for instance, request a machine with a certain CPU power; our intention is to extend
this element with the ability to grant Advance Network Reservation).

In a standard Bandwidth Broker scenario, where signaling is used to ensure per-
flow QoS, routers must constantly update the Bandwidth Broker about their current
state, and at least the ingress router close to the newly joining flow must be informed
about reservations in order to detect them and apply the right shaping or policing
functions to ensure conforming behavior. Since our Resource Broker controls all the
traffic, knowing when a flow enters and leaves the aggregate, there is no need for
such traffic updates. Other information about the network is however needed, and
would have to be communicated to the Resource Broker from a constantly active
distributed measurement system in the Grid:
• Bottleneck link capacities1 must be known for all bottlenecks of all end-to-end

paths.
• Shared bottlenecks must be detected.

We assume that knowledge about bottleneck capacities and shared bottlenecks is
available at the end systems, and point out that there are enough indications in the
literature that obtaining such measurements would be feasible. This literature will be
surveyed in the next section. We explain how our mechanism works in Section 3, and
support our explanations with simulation results in Section 4. Section 5 concludes.

2 Related work

2.1 Network Reservations

In general, there are two types of network resource reservations in computer networks
[1]. One is immediate reservation which is made in a just-in-time manner and the
other is advance reservation, which allows reserving network resources a long time
before they are actually used.

1 In what follows, the term “capacity” does not refer to the physical capacity of a link but the

maximum transmission rate that it provides to users of the protected high-class traffic
aggregate.

Early work on advance reservation focused on reservation protocols like RSVP [2]
and ST-II [3], admission control mechanism [4] and routing algorithms for networks
with advance reservations [5].
Grid applications need guarantees of Quality of Service (QoS) [6,7]. Targeting
deadline support for bulk data transfers, the problem of network resource reservation
[8] has been proposed to be studied within the grid scope. An example for a Grid
toolkit that supports such mechanisms is Globus with its GARA resource allocation
component [9]. Another example for the application of advance reservations is a
distributed media server systems as described in [10], where a large number of media
files are transmitted between the different servers.

In [12] if the latest call request is a malleable request, the method of [11] or [1] is
used to adjust the bandwidth or duration to satisfy the requester. However for a fixed
request, the bandwidth or duration of transmission can not be modified.

A general view of the network resources sharing in Grids and Grids traffic
isolation are discussed in [13]. Optimization of bandwidth sharing among Grid flows
is given [14] by manipulating the transmission windows of the flexible requests
between minimum and maximum rates to maximize the acceptance rate of requests
and to maximize the network utilization while still meeting their deadlines. The
formulated optimization problem is proven to be NP-complete.

Two types of strategies for scheduling bulk data transfers are possible [15]. One
strategy is to immediately grant or reject admission to a reservation request on its
arrival time. In the other strategy, if a reservation request can not be granted or
rejected at the time of its arrival, it is put in a queue to explore its possible admission
later. Our mechanism is based on the former strategy.

A time-slot based approach for scheduling the elastic and streaming requests is
described in [16]. However, the effect of the extra signaling overhead, which is due to
the manipulation of the data transfer rates of individual flows, is not taken into
account in this approach.

In all the above approaches, a flow sends at a fixed rate in a time slot. The residual
network capacity gets wasted in the approaches which do not use explicit signaling
for the manipulation of data transfer rates of individual flows. The above approaches
are based on offline scheduling of network reservations. Furthermore the above
approaches are not reliable and realistic as they do not take into account the
communication losses and overheads which occur in real networks. Our mechanism is
reliable and realistic and it takes into account all communication and computation
overheads that are involved in a reliable transfer of data in a network. Our mechanism
provides online scheduling of network reservations. Furthermore in our proposed
scheme the residual capacity is opportunistically and fairly shared by all existing
flows, which results in the early completion times of flows and which consequently
leads to higher percentage of admission of flows in the network.

2.2 Network Measurements

The information about the network that is needed for our architecture can be obtained
via an end-to-end measurement system such as the one described in [17]. This system

could send probe traffic, or require the sender to cooperate by time stamping the
packets or sending them back-to-back. Active methods for deducing bottleneck
capacities via so-called “packet pairs” have been studied for a long time, starting with
[18], and led to a large number of measurement tools. An example of such tool is
“NetTimer” [19]. Recently, strictly passive methods were investigated, where the fact
that TCP itself sends packet pairs if receivers use “Delayed ACKs” (as the
specification suggests) is exploited [20].

Detecting shared bottlenecks in the network is also not a new problem; various
techniques were proposed in [21,22]. In [23], a completely passive approach for
learning about shared bottlenecks was introduced.

2.3 Congestion Control

Common admission control schemes assume all flows to use a certain fixed (or
maximum) rate. It is a key feature of our mechanism that it manages to efficiently
utilize network resources in a scalable manner because flows automatically increase
their rates as bandwidth becomes available. This is attained by using a congestion
control mechanism for all end-to-end flows; moreover, we use a mechanism that is
designed for high-speed networks (networks with a large bandwidth-delay product),
where standard TCP congestion control is known not to yield satisfactory
performance.

Most end-to-end congestion control schemes in the literature converge to a rate
which depends on the round-trip time (RTT). One particular fairness measure that
would suit our needs is called "max-min fairness". The authors of [24, 25, 26] showed
that the well-known TCP variants FAST TCP, Scalable TCP (STCP), HighSpeed-
TCP, BIC, CUBIC, H-TCP are not "RTT-fair". There are however exceptions: UDT
[27] is designed to be max-min fair. Because it is designed for high-speeds and
particularly convenient in a Grid setting, we chose UDT for our mechanism, but stress
that any max-min fair congestion control scheme could be used in its place.

3 Our Quality of Service Mechanism: Introduction, Design and
Implementation

3.1 Introduction

The QoS mechanism provides strict network guarantee to a flow, i.e., it admits a flow
with an average rate (we call this the “Average Required Rate (ARR)”) of x bits per
second to make it possible for it to meet its deadline. After admission, a fair allocation
is provided to flows using a max-min fair congestion control scheme in such a way
that at any time the rate of any flow does not go below its average rate requirement.

The admission and termination of a flow is controlled through the Resource Broker
(RB) residing on any node in the network and by having a Sender-Resource Broker
Signaling Mechanism. Note that we only assume a single node for the sake of

simplicity, and distributing the Resource Broker with a scheme as in [28] would not
change anything about our mechanism.

It is assumed that an efficient technique for measuring the bottleneck capacity and
shared bottlenecks is used in the Grid network. There are existing techniques which
achieve that (see section 2). Further, we assume that all the QoS traffic is isolated
from any other traffic − that is, the Resource Broker has complete knowledge of all
flows that enter and leave the system in our QoS mechanism.

The design goals of such a QoS Mechanism include providing strict network
guarantees, higher percentage of admission of flows in the network, Advance
Reservation of flows and max-min fair allocation to flows irrespective of their RTTs.

3.2 Design/Operation of the QoS Mechanism

The basic idea is to divide the bandwidth into weights of some predefined rate value
(e.g. each weight is y bits per second). So a flow requiring an ARR of x bits per
second takes x/y share of the bottleneck capacity.

The following example explains the scenario. Let us assume that we have
bottleneck capacity of 4 Gbps and we have 4 flows at the start sharing the bottleneck.
Let one weight be of 1 Gbps and each flow requires an ARR of 1 Gbps and each flow
has a different completion time. As the required ARR for all the flows is available, all
the flows are admitted. Each flow informs the RB about its desired admission in the
network and it will also inform the RB as soon as it terminates so that its entry is
deleted by the RB and the resources owned by the flow are relinquished. In the case
of congestion or loss in the network the rates of all flows are reduced to their average
required rates.

After t1 seconds flow-1 terminates. This means that 1 Gbps of the bottleneck
bandwidth is now available. This available bandwidth will be divided fairly among
the existing flows, i.e. among flows 2, 3 and 4, using a max-min fair mechanism. So
each remaining flow (2, 3 and 4) will reach the sending rate of 1.33 Gbps. Increased
rate of 1.33 Gbps will make the flows 2, 3 and 4 terminate earlier than their deadlines.
The pictorial representation of the 3 flows at that particular moment is shown in
figure 1.

Fig. 1. At time t1, flow 1 terminates. The black marks along the x-axis only show the (logical)
expected completion times E2’, E3’ and E4’ for the termination of flows 2, 3 and 4 respectively
according to the rate of the flows at that particular moment of time t1.

Bottleneck
Bandwidth

(Gbps)

4 Gbps

t1 – E1 E2 E3

E4

Flow 2

Flow 3

Flow 4

Time (seconds)

 E2’
E3’ E4’

Suppose that after t2 seconds a new flow (flow-5) requiring 1 Gbps ARR wants to
be admitted in the network before any of the existing flows (i.e. flows 2, 3 and 4)
terminates, as shown in figure 2.

Fig. 2. At time t2, Flow-5 asks the Resource Broker for admission

The new flow is admitted in the network as its ARR is available. All flows (flows

2, 3, 4 and 5) will now be sending at the rate of 1 Gbps. The pictorial representation
of the 3 previous flows (flows 2, 3 and 4) and the new flow (flow 5) at the time of
admission of flow-5 in the network is shown in figure 3. Note that the pictures 1, 2
and 3 show ideal adjustment of rates and are just used to explain the example; in
actual simulation the adjustment of rates takes some time according to the congestion
control protocol.

Fig. 3. The dotted marks along the x-axis show the expected completion times E2”, E3” and
E4” for the termination of flows 2, 3 and 4 respectively according to the rate of the flows at that
particular moment of time t2.

3.3 Implementation of the QoS Mechanism

One of the key components of our proposed QoS mechanism is the Resource Broker
which is designed for admission control and to maintain the current state of network
(i.e. all information about existing flows, shared bottleneck links and their capacities
and paths). To admit a flow a sender sends a message to the RB for its possible
admission and upon completing the transfer of a flow, the sender sends a termination
message to the RB. This message passing takes only a few milliseconds on average,
which is quite negligible as compared to a typical Grid flow transfer time in which
huge amount of data is transferred. In the simulations the FTP application protocol is
used over the UDT high-speed data transfer protocol. The Admission Control
Algorithm for the RB is given below.

Bottleneck
Bandwidth
(Gbps)

4 Gbps

t2 E2 E3 E4

Flow 2

Flow 3

Flow 4

Time (seconds)

 E2’
E3’ E4’

Time (seconds)
 E5

Flow 4
Bottleneck
Bandwidth
(Gbps)

 4 Gbps

t2 E2 E3 E4 E2’ E3’ E4’

Flow 3

Flow 2

Flow 5

 E4” E3”
E2”

DS,DF,TS,ARR,ID,RT: Data size, duration, start time, ARR, ID and
reservation type of the flow for which a reservation is requested
RT ∈ {IR,AR}: IR = Immediate reservation and AR = Advance reservation
Record of a flow: {TS,TE,DF,DS,ARR,ID}
Φ: Set of records of the currently accepted flows sharing the
bottleneck link
CT: The total capacity of the bottleneck link
TC: The current time

Procedure ARR_CC(Network_Topology_Information)

While (All flows are processed)

If (a new reservation is requested)
ARR = DS / DF

 ID = generate ID for new request
If (Admission(Φ,ID,ARR,RT,DF,TS,TC,CT) = YES) Then
{Accept the flow and start the flow with its ARR at its start
time using a max-min fair Congestion Control protocol}

 Else
 {Reject the flow}

 If (a served request is completed) Then
 Termination(Φ,ID)

End While

End Procedure

Procedure Admission (Φ,ID,ARR,RT,DF,TS,TC,CT)

Set CR to 0 // CR is the Reserved Capacity

If (RT = IR) Then // Immediate reservation request

TS = TC
TE = TC + DF // TE is the End Time of a flow

Else // Advance reservation request
TE = TS + DF

For Each flow ∈ Φ

If ((flow.TS < TE) AND (flow.TE > TS)) Then
CR = CR + flow.ARR

End For

If (CT – CR) > ARR Then

Φ = Φ + flow // flow = flow_record(TS,TE,DF,DS,ARR,ID)
Return “Yes”

Else
 Return “No”

End Procedure

Procedure Termination (Φ, ID)

For Each flow ∈ Φ

If (flow.ID = ID) Then
Φ = Φ - flow

 Break
End For

End Procedure

4 Simulations and Analysis

A single bottleneck link dumbbell network configuration is used for the simulation
using ns-2. The bottleneck capacity is 1Gbps and the bottleneck delay is set to 50ms.
Drop Tail routers are used. The buffer size of the bottleneck link is set to 100% of
Bandwidth-Delay product. The packet size is set to 1500 bytes. The capacity of side
links is 10 Gbps and the delay of each side link is set to 2ms. Due to space
constraints, only the most important results are included in order to show that our QoS
mechanism meets all its goals.

4.1 Simulation: Higher Acceptance Percentage of Flows in the Network

A series of experiments is performed with 25, 50, 75, 100 and 125 flows. In each
experiment the arrival time of a new flow is random in each five seconds interval, the
data size of each flow is randomly chosen between 100 MB to 2 GB and the duration
of each flow is randomly chosen between 50 to 300 seconds. Without our QoS
mechanism (ARR-CC), a flow would send its data at a fixed rate equal to its ARR and
would complete by its deadline. Figure 4 shows the acceptance percentages with our
QoS mechanism as opposed to Fixed-Rate data transfers.

Fig. 4. Flows Acceptance Percentage with and without our QoS mechanism

4.2 Simulation: Mixed Types of Reservation Requests

For this experiment we extended our mechanism with an advance reservation
capability. In this simulation ten flows are started with different data sizes and starting
times. The first and second flows are granted admission at their admission time as
their ARR is available. The fourth flow joins the network at 10 seconds of simulation
time and reserves bandwidth for 30 seconds in advance, starting at 40 seconds of
simulation time and so on. All accepted flows utilize the maximum available
bandwidth and finish earlier than their deadlines. Table 1 shows that the average rate
achieved by a flow for data transfer is higher than the ARR of that flow. It has
become possible due to the use of the high-speed congestion control protocol, UDT,
which makes the flows to quickly fill up the residual capacity of the network.

Table 1: Immediate and Advance Reservations: AT is the Admission Time, ARST is
the Advance Reservation Start Time, CT is the Completion Time and ARA is the
Average Rate Achieved, IR is the Immediate Reservation and AR is the Advance
Reservation

Flow

File
Size
(GB)

AT
(Sec)

Duration
(Sec)

ARST
(Sec)

ARR
(Mbps)

Status CT
(Sec)

ARA
(Mbps)

1 1 0 40 -- 200 IR Accepted 10 800
2 3.75 20 100 -- 300 IR Accepted 72 577
3 6 30 120 -- 400 IR Rejected -- --
4 1.875 10 30 40 500 AR Accepted 69 517
5 0.438 15 35 40 100 AR Accepted 62 160
6 3.125 115 50 -- 500 IR Rejected -- --
7 1.125 145 30 -- 300 IR Rejected -- --
8 4 20 40 150 800 AR Accepted 186 889
9 0.500 25 40 150 100 AR Accepted 182 125
10 2 50 40 250 400 AR Accepted 268 889

Figure 5 shows the above simulation of the ten flows. All flows utilize the

maximum bandwidth and their rates do not go below their respective ARR at any time
during the simulation. The total rate curve shows that, throughout the simulation time,
when there is at least one flow in the network, its rate stays around 1Gbps which
indicates maximum utilization of the network.

Fig. 5. The QoS mechanism with mixed type of reservation requests

5 Conclusion and Future Work

At the beginning of this paper, we made the point that end-to-end virtualization
requires deterministic and sustainable QoS guarantees from lower layers. The reason
for this requirement is easy to see: in a performance oriented system like the Grid, it
only makes sense to hide complexity if such hiding does not come at the cost of

reduced efficiency. QoS guarantees must therefore be a part of the little information
that is kept about lower layers – and failure to deliver the necessary QoS raises the
question whether virtualization makes sense for the system. For this reason, saying
"yes" to requests as often as possible must be the main design goal of a Grid QoS
system.

Our results show that, by using a fair and stable bandwidth allocation mechanism
like UDT to provide network reservation guarantees for elastic flows, the network can
be fully utilized, resulting in earlier completion of a long-lived flow which
consequently makes it possible to admit more flows earlier than it would have been
possible without using a congestion control mechanism. Clearly, the goal of saying
“yes” as often as possible was reached. Our contribution is that we have shown the
design and the implementation of a reliable and realistic approach which takes the
computation and communication overheads into account.

Our next step is to extend the mechanism in such a way that it will become possible
to admit some of the new flows in the network even if the required bandwidth is not
available at the cost of decreasing the rates of some already existing flows even below
their ARRs. This will increase the acceptance percentage of flows. Since this requires
the Resource Broker to choose which flows are to decrease their rates, this scheme
will require some signaling between the Resource Broker and end nodes.

References

1. Burchard, L., Heiss, H., Rose, D.: Performance issues of bandwidth reservations for grid
computing. Proceedings of Computer Architecture and High Performance Computing, pp.
82–90, (2003)

2. Schill, A., Breiter, F., Kuhn, S.: Design and Evaluation of an Advance Reservation
Protocol on Top of RSVP. In IEIP 4th International Conference on Broadband
Communications (BC '98), Stuttgart, Germany, IFIP Conference Proceedings 121,
Chapman & Hall, pp. 23–40, (1998)

3. Reinhardt, W.: Advance Resource Reservation and its impact on Reservation Protocols. In
Proceedings of Broadband Islands '95, Dublin, Ireland, (1995)

4. Ferrari, D., Gupta, A., Ventre, G.: Distributed Advance Reservation of Real-Time
Connections. Multimedia Systems, Vol.5. Springer-Verlag, Berlin Heidelberg New York,
pp. 187-198, (1997)

5. Guerin, R., Orda, A.: Networks with Advance Reservations: The Routing Perspective. In
Proceedings of IEEE INFOCOM 2000, pp. 118–127, (2000)

6. Zhang, H., Keahey, K., Allcock, B.: Providing Data Transfer with QoS as Agreement-
Based Service. International Conference on Services Computing (SCC 2004), Shanghai,
China, (2004)

7. Foster, I., Roy, A., Sander, V.: A Quality of Service Architecture that Combines Resource
Reservation and Application Adaptation. 8th International Workshop on Quality of
Service. June 2000, (IWQoS 2000), pp. 181–188, (2000)

8. Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L.: End-to-end quality of service for
high-end applications. Computer Communications, vol. 27, no. 14, pp. 1375–1388, (2004)

9. Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-
Allocation. In 7th International Workshop on Quality of Service (IWQoS), London, UK,
pages 27–36, (1999)

10. Burchard, L., Luling, R.: An Architecture for a Scalable Video-on-Demand Server
Network with Quality-of-Service Guarantees. In 5th International Workshop on Distributed
Multimedia Systems and Applications (IDMS), vol. 1905 of Lecture Notes in Computer
Science (LNCS), pp. 132–143. Springer, (2000)

11. Xing, J., Wu, C., Tao, M., Wu, L., Zhang, H.: Flexible Advance Reservation for Grid
Computing. GCC 2004, pp. 241-248, (2004)

12. Wu, L., Xing, J., Wu, C., Cui, J.: An Adaptive Advance Reservation Mechanism for Grid
Computing. PDCAT 2005, pp. 400-403, (2005)

13. Primet, P., Zeng, J.: Traffic Isolation and Network Resource Sharing for Performance
Control in Grids. ACNS'05, USA (2005)

14. Marchal, L., Primet, P., Robert, Y., Zeng, J.: Optimal Bandwidth Sharing in Grid
environment. IEEE HPDC, Paris, France, (2006)

15. Kaushik, N., Figueira, S., Chiappari, S.: Flexible Time-Windows for Advance Reservation
in LambdaGrids, ACM SIGMETRICS/Performance, (2006)

16. Naiksatam, S., Figueira, S.: Elastic Reservations for Efficient Bandwidth Utilization in
LambdaGrids. Elsevier's FGCS - The International Journal of Grid Computing: Theory,
Methods and Applications, vol. 23, issue 1, pp. 1-22, (2007)

17. Yousaf, M. M., Welzl, M.: A Reliable Network Measurement and Prediction Architecture
for Grid Scheduling. IEEE/IFIP International Workshop on Autonomic Grid Networking
and Management (AGNM'05), Barcelona, Spain, (2005)

18. Keshav, S.: Congestion Control in Computer Networks.
(http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/91/thesis/keshav.th.tar.Z) PhD
Thesis, published as UC Berkeley TR-654, (1991)

19. Lai, K., Baker, M.: “Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. In
Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems, San
Francisco, California, (2001)

20. Barz, C., Frank, M., Martini, P., Pilz, M.: Receiver-Based Path Capacity Estimation for
TCP. In Proceedings of KIVS'05, Kaiserslautern, Germany, (2005)

21. Shriram, A., Kaur, J.: Identifying Bottleneck Links Using Distributed End-to-end
Available Bandwidth Measurements. In the First ISMA Bandwidth Estimation Workshop
(BEst'03), San Diego, USA, (2003)

22. Kim, M. S., Kim, T., Shin, Y., Lam, S., Powers, E. J.: A Wavelet-Based Approach to
Detect Shared Congestion. In Proceedings of ACM SIGCOMM 2004, (2004)

23. Katabi, D., Bazzi, I., Yang, X.: A passive approach for detecting shared bottlenecks. In
Proceedings of the 10th IEEE International Conference on Computer Communications and
Networks, (2001)

24. Li, Y. T., Leith, D., Shorten, R.: Experimental Evaluation of TCP Protocols for High-
Speed Networks. Technical report, Hamilton Institute, (2005)

25. Tan, K., Song, J., Zhang, Q., Sridharan, M.: Compound TCP: A Scalable and TCP-
friendly Congestion Control for High-speed Networks. 4th International Workshop on
Protocols for Fast Long-Distance Networks (PFLDnet 2006), Nara, Japan, (2006)

26. Ha, S., Kim, Y., Le, L., Rhee, I., Xu, L.: A Step toward Realistic Performance Evaluation
of High-Speed TCP Variants. PFLDnet 2006, Nara, Japan, (2006)

27. Gu, Y., Grossman, R.: UDT: UDP-based data transfer for high-speed wide area networks.
Computer Networks, special issue on Hot topics in transport protocols for very fast and
very long distance networks, (2007)

28. Müller, J. A., Hessler, S., Irmscher, K.: Class of Service Concepts in Autonomous
Systems. Terena networking conference 2004 (Terena2004), Rhodes, Greece, (2004)

