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Abstract 
 

For efficient use of geographically distributed resources in a grid, the 
selection of the optimum site is highly important for an autonomic grid 
scheduler. We propose a reliable network measurement and prediction 
architecture that helps its clients with their scheduling decisions by 
informing them about the minimum time that it will take to transfer 
certain amount of data. This is achieved by calculating TCP throughput 
under ideal conditions. Our prediction is based on the “packet pair” 
measurement method; we introduce a receiver side passive capacity 
estimation technique which additionally calculates a reliable lower 
bound of the Round Trip Time. Passive operation is feasible in a grid, 
where large file transfers between nodes are frequent, and it ensures 
non-intrusiveness of our architecture; active measurements are only 
initiated when they are needed by clients. 

 
 
1.  Introduction 
 
Grid Computing promises a super-computing like performance at a low cost, which 
means that a large number of users should have the opportunity to solve their 
problems on a widely accessible platform. In order to meet the claimed performance, 
the grid research community needs to design methodologies which can exploit this 
computation power. As resources in a grid span over several administrative domains 
and heterogeneous environments, a comprehensive software infrastructure is needed 
for Grid Computing [1].  
 
Among others, one major issue in fully utilizing the grid capabilities is assignment of 
appropriate resources for a job in such a way that minimizes the execution time of a 
particular set of tasks. For a good allocation, which is crucial for efficient execution 
and use of grid resources, a scheduler must have comprehensive and up-to-date 
knowledge of available resources. Choosing them just on the basis of a job 
requirement is not enough. As these resources can be available on many execution 
sites, it is important to know the time it takes to transfer a certain amount of data 
between them – this could help a scheduler to select the optimum site. A system to 
estimate and predict network path characteristics can help a scheduler a great deal. 
Ideally, these estimates should neither be old nor based on some weak techniques; 
rather, they must be very precise and reliable.  
 
There are many reasons to measure network traffic [2], including service monitoring, 
network planning, cost recovery etc. - but this is problematic because the Internet is 
highly dynamic in nature, and the measurements are most valuable when the relevant 
network properties remain steady. However, some path properties are relatively stable 
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[3]: the capacity of a path tends to be constant until a routing change or link upgrade 
occurs [4], as compared to available bandwidth which varies with time and shows 
high variability in a wide range of timescales, hence making it hard to measure.  
 
Most data-transfer applications and about 90% of the Internet traffic use the TCP 
protocol [5], which makes the throughput of a TCP transfer the most important 
performance metric of a path. It depends on many factors and path properties, and a 
precise estimate of these characteristics, particularly path capacity can yield a reliable 
upper bound on TCP throughput. This corresponds with the minimum time that will 
be needed to transfer a file. Methods to detect the capacity are difficult in a normal 
environment but a grid is more supportive for accurate measurements: the nodes in a 
grid are available most of the time and we can monitor large flows among all of its 
sites.   
 
The rest of this paper is structured as follows. Section 2 has an architecture 
description of our proposed system. We describe our measurement technique in 
Section 3. How to predict the minimum transfer delay is illustrated in Section 4. We 
summarize related work in Section 5, and our conclusions and future work are given 
in Section 6.  
 
2.  Architecture Description 
 
2.1  Design Considerations 
 
We identified the following requirements for our measurement and prediction system: 
the dynamic nature of the network requires frequent measurements in order to provide 
a precise and up-to-date estimation of network characteristics. As measurements are 
taken quite often, the measurement overhead should be as small as possible. The 
system must be scalable because it should not limit the size of the grid. Last but not 
least, it must be available all the time. 
 
2.2  Architecture 
 
Our system will consist of five basic components, a Monitor, an Information 
Manager, an Information Base, an Active Prober, and a Client. A high level 
architecture is shown in Figure 1.  
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Figure 1: High level architecture of the system
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The key component in the whole system is the Monitor which has sub components: a 
Sniffer, a Filter, and an Information Extractor.  The Sniffer monitors and captures  
traffic from a network interface by using the packet capturing library “libpcap”.  The 
captured packets1 from the Sniffer may belong to many flows; they are all passed to 
the Filter that separates packets which belong to a particular stream. Another task of 
the Filter is to remove cross traffic effects from a particular stream because  
ultimately we need potential packet pairs. The Information Extractor (IE) receives a 
filtered stream and generates reliable estimates by using the measurement method 
explained in the next section. This whole scenario is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The Information Manager (IM) stores and retrieves information from the Information 
Base (IB). The information in the IB is stored with a timestamp and fresh information 
is considered more reliable. Another task of the IM is to invoke the Active Prober if: 
• Information is too old for a particular path to meet the required level of reliability. 
• A network path is lightly loaded and traffic generated by the Active Prober will 

not severely affect the regular traffic. 
• Some information for a particular path is missing. 
• For a particular path, client behavior is such that it needs more reliable 

information.  
 
The Active Prober injects some traffic for the measurement purpose and generates 
estimates as required. 
 
The next component of our system is the Information Base, placed at a central 
location, to store measurements. The Information Base is quite similar to the 
Persistent State component of Network Weather Service NWS [8]. We are therefore 
considering to integrate our system with NWS. Interaction with the Client will be 
                                                 
1 When we talk about “captured packets”, we refer to packet related information as one would obtain 
with tcpdump. 
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Figure 2: Internal architecture of the Monitor
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provided according to the Grid Monitoring Architecture (GMA) [9] . 
 
3.  Measurement Method 
 
3.1  Packet Pair 
 
The main idea behind the Information Extractor is to apply the packet pair [10] 
method on the traces and estimate the path capacity. Packet pair has been studied 
extensively; among others, it was used by Bolot [10], Carter and Crovella [11], 
Paxson [12], and Lai and Baker [13] to measure the bottleneck bandwidth. The 
concept of packet pair is, if two packets are sent back-to-back such that both packets 
are queued together at the bottleneck link, then the difference in their arrival times is 
determined by the bottleneck link. Specifically the time difference between two 
packets is equal to the time that the router at the end of the bottleneck link spent 
receiving the second packet after the first one was received.  As the spacing can only 
be changed by a slower link, it will remain the same through to the receiver. This 
concept is presented in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If ∆ is the arrival time difference of packet pair (Pi and Pi-1) at the receiver, s is the 
size of the first packet, and b is the bandwidth of the bottleneck, then the path capacity  
(the bandwidth of the bottleneck) can be calculated by the Equation 1. A formal proof 
of this equation is given in [14]. 
 

Δ
=

sb                 (1) 

 
The above explanation assumes an ideal packet pair situation, but cross traffic can 
cause congestion leading to a high or low estimate. This can happen as follows: 
• If, after the bottleneck, some packets are queued before the first one of a packet 

pair, then the second packet of the pair will come closer to the first one. In this 
case, the gap caused by the bottleneck link will be reduced which will result in a 
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Figure 3: Packet Pair (Pi-1 and Pi), before and after bottleneck 
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high estimate of the bottleneck capacity. A higher estimate is however not a 
severe problem for us, as we are looking for a reliable maximum of the capacity – 
in other words, this error will cause our system to say something like “it will take 
at least 3 seconds to transfer this file” instead of saying “it will take at least 5 
seconds to transfer this file”. While it would be better to answer “5 seconds” if 
this is possible, our “3 seconds” answer would still be correct. 

• If some packets are queued between the two packets, then they will increase the 
gap of the packet pair, which will result in a low estimate of bottleneck capacity. 
This is however unlikely to occur all the time in a long lasting stream – therefore, 
this error will probably always be filtered out when we take the maximum of the 
packet pair capacity estimates. 

 
3.2  Detection of Packet Pairs 
 
To ensure that both packets are sent close enough to be queued at bottleneck, traffic 
has been sent actively by many measurement tools [4].  To avoid the overhead caused 
by active probing our technique is based on passive monitoring at the receiver side. 
 
Based on the self-clocking effect described in [6] and the delayed ACK  mechanism 
[15] (the receiver only acknowledges every second packet, and an ACK for the first 
packet is only generated if a TCP timer expires), implemented in many TCP stacks 
today, it was shown that every TCP sender sends about 50% of all packets as packet 
pairs [7].  
 
We have designed a TCP receiver window (rwnd) based technique to detect potential 
packet pairs. If the receiver implements the delayed ACK mechanism, then for a 
delayed ACK we can expect a pair of packets (or even a longer series of packets) to 
be sent back-to-back.  Potential packet pairs are caused by a delayed ACK, but from a 
continuous stream it is not easy to decide about this pair.  We have used the rwnd size 
property to identify a pair of packets triggered by a delayed ACK. A sender can send 
at most the amount of data which is allowed by the rwnd. This window size is sent by 
the receiver every time it ACKs an incoming data packet. So, if we receive data 
segments which are beyond the window range of an ACK, then these must have been 
caused by the next ACK. This is shown in Figure 4. 
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However, simply waiting for the next ACK and assuming the corresponding packet 
series to be a pair is not enough: the receiver can, for instance, change its window size 
with every ACK, and if it is decreased, then the above assumption may not hold. This 
is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, if a series of packets is only within the range of a single ACK, then this 
series can reliably be considered as having been caused by that particular ACK. This 
is also indicated by ACKi+2 in Figure 4 – if that ACK had been sent before receiving 
the pair, we could not be sure that the pair was caused by ACKi+1 alone (and 
therefore actually sent as a pair). 
 
If we observe a flow from start, then the slow start mechanism [16] also helps us in 
finding potential packet pairs. In the slow start phase, if the initial window size is two 
times the maximum segment size (MSS), then after the handshake, an initial burst of 
packet is always sent back-to-back [17]. 
 
Another facet of our method is that it can also be used to estimate the Round-Trip 
Time (RTT). According to Figure 4, the time difference between ACKi+1 and the 
shaded pair is precisely an RTT.  The authors of [18] suggested a similar approach to 
estimate an upper bound of the RTT, the delay between ACKi (instead of ACKi+1) 
and the packet pair in Figure 4, which can result in higher estimates if the situation 
explained in Figure 5  occurs. 
 
The reliability of our estimates will increase with the number of packet pairs we 
identify and the large flows in grid will help us to find a large number of packet pairs, 
resulting in more reliable estimates. Currently we are applying this technique at the 
receiver side but the grid environment will help us to carry out measurements at the 
sender side too, which could give us more accurate results.  
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4.  Predicting Minimum Transfer Delay 
 
If W is the TCP window size and p is the packet loss ratio, then from [29], we know 
that: 

 

                                                                
p
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Therefore, we can write the well-known TCP steady-state throughput equation [30]: 
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as follows, assuming the ideal case of no background traffic: 
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Setting xRTTtRTO 4= as a simplification [31], and replacing W with the ideal 
window size C x RTT (where C is the bottleneck capacity), we can derive the 
minimum time TCP will need to transfer a file of size F as: 
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Where s is the packet size that is used by the sender. This is the final result that clients 
will obtain from the Information Manager. 
 
5.  Related Work 
 
Nettimer [19] is a tool which uses passive packet pair monitoring and works at the 
receiver side. It uses the basic formula in equation (1) to calculate the path capacity 
having dispersion of packet pairs and applies a density function on the samples to 
filter good samples from bad ones. In case of two hosts (when it is possible to deploy 
measurement software both at sender and receiver), the authors used “Receiver Based 
Packet Pair (RBPP)” [20] with their filtering density function; in case of one host they 
used “Sender Based Packet Pair (SBPP)” [20], if the host is a sender and “Receiver 
Only Packet Pair (ROPP)” [21] if the host is a receiver.  
 
In RBPP the pattern of data packet arrivals at the receiver is analyzed by using 
knowledge of the pattern by which data packets were originally sent. So, it is assumed 
that the receiver has full timing information available. SBPP works by using arrival 
times of ACKs instead of arrival times of packets.  
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ROPP is similar to RBPP but it takes timing measurements only from the receiver. 
The results show that ROPP achieves accuracy within 1% of RBPP but it is easy to 
deploy as compared to RBPP. 
 
The technique presented in [22] is also receiver based and uses passive monitoring; 
here, packet triplets are considered rather than packet pairs. The authors of [22] 
trigger packet triplets from the receiver side by modifying the window size and 
negotiating MSS. As compared to this, we don’t have to change the rwnd and we can 
also take longer series of packets into account. In [23], passive monitoring is used but 
modifications at the sender side are suggested.  
 
For passive measurement of RTT, the authors of [24] introduced a method on the 
basis of changes in the sender's congestion window. According to their method, the 
measurement point must accurately predict the type of congestion control used. The 
three way handshake during the TCP connection set up and predictable behavior of 
slow start has also been used for RTT estimation [17]. A statistical method, which 
associates a data segment with an ACK segment that triggered it [25], also provides 
an RTT estimate. Another method which associates data segments with the 
acknowledgments that triggered them is given in [26] but here, the TCP timestamp 
option was used for this association. The authors of [26] also proposed a second 
method, which infers the RTT by observing the repeating patterns of segment clusters.  
 
6.  Conclusion and Future Work 
 
We presented a measurement system to estimate network path characteristics in a 
grid. The key component of the system, the Monitor, works at the receiver side of a 
TCP connection. Most of the time, our system works in a passive mode, but it can 
switch to an active mode according to requirements.  Our measurement technique is 
based on the packet pair mechanism; we presented a methodology to identify packet 
pairs at the receiver side based on the relationship of ACKs and corresponding data 
packets. Our technique is also helpful in the estimation of RTT. 
 
Currently we are working on a preliminary version of the Information Extractor 
component of the Monitor for a reliable estimate of the path capacity. After an 
accurate and reliable estimate of bottleneck bandwidth, our target is the detection of 
shared bottlenecks because this knowledge can enhance the usefulness of our 
predictions.  
 
For experimental results we plan to use our system in Planet Lab [28], and our 
ultimate target is to deploy it on Austrian Grid [27].   
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