
 1

A Reliable Network Measurement and Prediction Architecture
for Grid Scheduling

Muhammad Murtaza Yousaf, Michael Welzl

Institute of Computer Science, University of Innsbruck, Austria

{Murtaza.Yousaf, Michael.Welzl}@uibk.ac.at

Abstract

For efficient use of geographically distributed resources in a grid, the
selection of the optimum site is highly important for an autonomic grid
scheduler. We propose a reliable network measurement and prediction
architecture that helps its clients with their scheduling decisions by
informing them about the minimum time that it will take to transfer
certain amount of data. This is achieved by calculating TCP throughput
under ideal conditions. Our prediction is based on the “packet pair”
measurement method; we introduce a receiver side passive capacity
estimation technique which additionally calculates a reliable lower
bound of the Round Trip Time. Passive operation is feasible in a grid,
where large file transfers between nodes are frequent, and it ensures
non-intrusiveness of our architecture; active measurements are only
initiated when they are needed by clients.

1. Introduction

Grid Computing promises a super-computing like performance at a low cost, which
means that a large number of users should have the opportunity to solve their
problems on a widely accessible platform. In order to meet the claimed performance,
the grid research community needs to design methodologies which can exploit this
computation power. As resources in a grid span over several administrative domains
and heterogeneous environments, a comprehensive software infrastructure is needed
for Grid Computing [1].

Among others, one major issue in fully utilizing the grid capabilities is assignment of
appropriate resources for a job in such a way that minimizes the execution time of a
particular set of tasks. For a good allocation, which is crucial for efficient execution
and use of grid resources, a scheduler must have comprehensive and up-to-date
knowledge of available resources. Choosing them just on the basis of a job
requirement is not enough. As these resources can be available on many execution
sites, it is important to know the time it takes to transfer a certain amount of data
between them – this could help a scheduler to select the optimum site. A system to
estimate and predict network path characteristics can help a scheduler a great deal.
Ideally, these estimates should neither be old nor based on some weak techniques;
rather, they must be very precise and reliable.

There are many reasons to measure network traffic [2], including service monitoring,
network planning, cost recovery etc. - but this is problematic because the Internet is
highly dynamic in nature, and the measurements are most valuable when the relevant
network properties remain steady. However, some path properties are relatively stable

 2

[3]: the capacity of a path tends to be constant until a routing change or link upgrade
occurs [4], as compared to available bandwidth which varies with time and shows
high variability in a wide range of timescales, hence making it hard to measure.

Most data-transfer applications and about 90% of the Internet traffic use the TCP
protocol [5], which makes the throughput of a TCP transfer the most important
performance metric of a path. It depends on many factors and path properties, and a
precise estimate of these characteristics, particularly path capacity can yield a reliable
upper bound on TCP throughput. This corresponds with the minimum time that will
be needed to transfer a file. Methods to detect the capacity are difficult in a normal
environment but a grid is more supportive for accurate measurements: the nodes in a
grid are available most of the time and we can monitor large flows among all of its
sites.

The rest of this paper is structured as follows. Section 2 has an architecture
description of our proposed system. We describe our measurement technique in
Section 3. How to predict the minimum transfer delay is illustrated in Section 4. We
summarize related work in Section 5, and our conclusions and future work are given
in Section 6.

2. Architecture Description

2.1 Design Considerations

We identified the following requirements for our measurement and prediction system:
the dynamic nature of the network requires frequent measurements in order to provide
a precise and up-to-date estimation of network characteristics. As measurements are
taken quite often, the measurement overhead should be as small as possible. The
system must be scalable because it should not limit the size of the grid. Last but not
least, it must be available all the time.

2.2 Architecture

Our system will consist of five basic components, a Monitor, an Information
Manager, an Information Base, an Active Prober, and a Client. A high level
architecture is shown in Figure 1.

Monitor Monitor

Information
Manager

Client Active
Prober

Information
Base

Figure 1: High level architecture of the system

 3

The key component in the whole system is the Monitor which has sub components: a
Sniffer, a Filter, and an Information Extractor. The Sniffer monitors and captures
traffic from a network interface by using the packet capturing library “libpcap”. The
captured packets1 from the Sniffer may belong to many flows; they are all passed to
the Filter that separates packets which belong to a particular stream. Another task of
the Filter is to remove cross traffic effects from a particular stream because
ultimately we need potential packet pairs. The Information Extractor (IE) receives a
filtered stream and generates reliable estimates by using the measurement method
explained in the next section. This whole scenario is shown in Figure 2.

The Information Manager (IM) stores and retrieves information from the Information
Base (IB). The information in the IB is stored with a timestamp and fresh information
is considered more reliable. Another task of the IM is to invoke the Active Prober if:
• Information is too old for a particular path to meet the required level of reliability.
• A network path is lightly loaded and traffic generated by the Active Prober will

not severely affect the regular traffic.
• Some information for a particular path is missing.
• For a particular path, client behavior is such that it needs more reliable

information.

The Active Prober injects some traffic for the measurement purpose and generates
estimates as required.

The next component of our system is the Information Base, placed at a central
location, to store measurements. The Information Base is quite similar to the
Persistent State component of Network Weather Service NWS [8]. We are therefore
considering to integrate our system with NWS. Interaction with the Client will be

1 When we talk about “captured packets”, we refer to packet related information as one would obtain
with tcpdump.

Information
Manager

Network
Interface

Sniffer

Information
Extractor

Filter

Figure 2: Internal architecture of the Monitor

 4

provided according to the Grid Monitoring Architecture (GMA) [9] .

3. Measurement Method

3.1 Packet Pair

The main idea behind the Information Extractor is to apply the packet pair [10]
method on the traces and estimate the path capacity. Packet pair has been studied
extensively; among others, it was used by Bolot [10], Carter and Crovella [11],
Paxson [12], and Lai and Baker [13] to measure the bottleneck bandwidth. The
concept of packet pair is, if two packets are sent back-to-back such that both packets
are queued together at the bottleneck link, then the difference in their arrival times is
determined by the bottleneck link. Specifically the time difference between two
packets is equal to the time that the router at the end of the bottleneck link spent
receiving the second packet after the first one was received. As the spacing can only
be changed by a slower link, it will remain the same through to the receiver. This
concept is presented in Figure 3.

If ∆ is the arrival time difference of packet pair (Pi and Pi-1) at the receiver, s is the
size of the first packet, and b is the bandwidth of the bottleneck, then the path capacity
(the bandwidth of the bottleneck) can be calculated by the Equation 1. A formal proof
of this equation is given in [14].

Δ
=

sb (1)

The above explanation assumes an ideal packet pair situation, but cross traffic can
cause congestion leading to a high or low estimate. This can happen as follows:
• If, after the bottleneck, some packets are queued before the first one of a packet

pair, then the second packet of the pair will come closer to the first one. In this
case, the gap caused by the bottleneck link will be reduced which will result in a

Pi-1

Direction of flow

Pi Pi-1

Pi Pi-1

Pi

∆=
s
b

Figure 3: Packet Pair (Pi-1 and Pi), before and after bottleneck

 5

high estimate of the bottleneck capacity. A higher estimate is however not a
severe problem for us, as we are looking for a reliable maximum of the capacity –
in other words, this error will cause our system to say something like “it will take
at least 3 seconds to transfer this file” instead of saying “it will take at least 5
seconds to transfer this file”. While it would be better to answer “5 seconds” if
this is possible, our “3 seconds” answer would still be correct.

• If some packets are queued between the two packets, then they will increase the
gap of the packet pair, which will result in a low estimate of bottleneck capacity.
This is however unlikely to occur all the time in a long lasting stream – therefore,
this error will probably always be filtered out when we take the maximum of the
packet pair capacity estimates.

3.2 Detection of Packet Pairs

To ensure that both packets are sent close enough to be queued at bottleneck, traffic
has been sent actively by many measurement tools [4]. To avoid the overhead caused
by active probing our technique is based on passive monitoring at the receiver side.

Based on the self-clocking effect described in [6] and the delayed ACK mechanism
[15] (the receiver only acknowledges every second packet, and an ACK for the first
packet is only generated if a TCP timer expires), implemented in many TCP stacks
today, it was shown that every TCP sender sends about 50% of all packets as packet
pairs [7].

We have designed a TCP receiver window (rwnd) based technique to detect potential
packet pairs. If the receiver implements the delayed ACK mechanism, then for a
delayed ACK we can expect a pair of packets (or even a longer series of packets) to
be sent back-to-back. Potential packet pairs are caused by a delayed ACK, but from a
continuous stream it is not easy to decide about this pair. We have used the rwnd size
property to identify a pair of packets triggered by a delayed ACK. A sender can send
at most the amount of data which is allowed by the rwnd. This window size is sent by
the receiver every time it ACKs an incoming data packet. So, if we receive data
segments which are beyond the window range of an ACK, then these must have been
caused by the next ACK. This is shown in Figure 4.

ACK i

Segment Numbers

..........

ACK i+1

Wi
Amount of data

that can be sent in
response to ACK i

Packet Pair
Triggered by ACK

i+1

Wi+1

Figure 4: Association between Packet Pair and the ACK which
 caused it.

ACK i+2

 6

However, simply waiting for the next ACK and assuming the corresponding packet
series to be a pair is not enough: the receiver can, for instance, change its window size
with every ACK, and if it is decreased, then the above assumption may not hold. This
is shown in Figure 5.

Therefore, if a series of packets is only within the range of a single ACK, then this
series can reliably be considered as having been caused by that particular ACK. This
is also indicated by ACKi+2 in Figure 4 – if that ACK had been sent before receiving
the pair, we could not be sure that the pair was caused by ACKi+1 alone (and
therefore actually sent as a pair).

If we observe a flow from start, then the slow start mechanism [16] also helps us in
finding potential packet pairs. In the slow start phase, if the initial window size is two
times the maximum segment size (MSS), then after the handshake, an initial burst of
packet is always sent back-to-back [17].

Another facet of our method is that it can also be used to estimate the Round-Trip
Time (RTT). According to Figure 4, the time difference between ACKi+1 and the
shaded pair is precisely an RTT. The authors of [18] suggested a similar approach to
estimate an upper bound of the RTT, the delay between ACKi (instead of ACKi+1)
and the packet pair in Figure 4, which can result in higher estimates if the situation
explained in Figure 5 occurs.

The reliability of our estimates will increase with the number of packet pairs we
identify and the large flows in grid will help us to find a large number of packet pairs,
resulting in more reliable estimates. Currently we are applying this technique at the
receiver side but the grid environment will help us to carry out measurements at the
sender side too, which could give us more accurate results.

ACK i

Segment Numbers

..........

ACK i+1

Wi
Amount of data

that can be sent in
response to ACK i Not a Packet Pair

Triggered by ACK i+1

W i+1 < W i

Figure 5: Wrong association between Packet Pair and an ACK

 7

4. Predicting Minimum Transfer Delay

If W is the TCP window size and p is the packet loss ratio, then from [29], we know
that:

p

W
3
8

= (2)

 => 23
8

W
p = (3)

Therefore, we can write the well-known TCP steady-state throughput equation [30]:

)321()

8
33(

3
2 2ppptpR

sT

RTO ++
= (4)

as follows, assuming the ideal case of no background traffic:

))

9
64(321)(8(

3
4

43 WW
t

W
R

sT
RTO ++

= (5)

Setting xRTTtRTO 4= as a simplification [31], and replacing W with the ideal
window size C x RTT (where C is the bottleneck capacity), we can derive the
minimum time TCP will need to transfer a file of size F as:

))

)(9
64(321(

)(
32

)(3
4

423 CxRTTRTTCCxRTT
R

sFt
++

= (6)

Where s is the packet size that is used by the sender. This is the final result that clients
will obtain from the Information Manager.

5. Related Work

Nettimer [19] is a tool which uses passive packet pair monitoring and works at the
receiver side. It uses the basic formula in equation (1) to calculate the path capacity
having dispersion of packet pairs and applies a density function on the samples to
filter good samples from bad ones. In case of two hosts (when it is possible to deploy
measurement software both at sender and receiver), the authors used “Receiver Based
Packet Pair (RBPP)” [20] with their filtering density function; in case of one host they
used “Sender Based Packet Pair (SBPP)” [20], if the host is a sender and “Receiver
Only Packet Pair (ROPP)” [21] if the host is a receiver.

In RBPP the pattern of data packet arrivals at the receiver is analyzed by using
knowledge of the pattern by which data packets were originally sent. So, it is assumed
that the receiver has full timing information available. SBPP works by using arrival
times of ACKs instead of arrival times of packets.

 8

ROPP is similar to RBPP but it takes timing measurements only from the receiver.
The results show that ROPP achieves accuracy within 1% of RBPP but it is easy to
deploy as compared to RBPP.

The technique presented in [22] is also receiver based and uses passive monitoring;
here, packet triplets are considered rather than packet pairs. The authors of [22]
trigger packet triplets from the receiver side by modifying the window size and
negotiating MSS. As compared to this, we don’t have to change the rwnd and we can
also take longer series of packets into account. In [23], passive monitoring is used but
modifications at the sender side are suggested.

For passive measurement of RTT, the authors of [24] introduced a method on the
basis of changes in the sender's congestion window. According to their method, the
measurement point must accurately predict the type of congestion control used. The
three way handshake during the TCP connection set up and predictable behavior of
slow start has also been used for RTT estimation [17]. A statistical method, which
associates a data segment with an ACK segment that triggered it [25], also provides
an RTT estimate. Another method which associates data segments with the
acknowledgments that triggered them is given in [26] but here, the TCP timestamp
option was used for this association. The authors of [26] also proposed a second
method, which infers the RTT by observing the repeating patterns of segment clusters.

6. Conclusion and Future Work

We presented a measurement system to estimate network path characteristics in a
grid. The key component of the system, the Monitor, works at the receiver side of a
TCP connection. Most of the time, our system works in a passive mode, but it can
switch to an active mode according to requirements. Our measurement technique is
based on the packet pair mechanism; we presented a methodology to identify packet
pairs at the receiver side based on the relationship of ACKs and corresponding data
packets. Our technique is also helpful in the estimation of RTT.

Currently we are working on a preliminary version of the Information Extractor
component of the Monitor for a reliable estimate of the path capacity. After an
accurate and reliable estimate of bottleneck bandwidth, our target is the detection of
shared bottlenecks because this knowledge can enhance the usefulness of our
predictions.

For experimental results we plan to use our system in Planet Lab [28], and our
ultimate target is to deploy it on Austrian Grid [27].

References

[1] I. Foster, C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufman, 2004 (2nd edition).

[2] J. Nevil Brownlee. Internet Traffic Measurement: An Overview. A background
paper for the ICAIS seminar. Miyazaki, Japan, March 99.

[3] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet
Path Properties. Proc. ACM SIGCOMM Internet Measurement Workshop, November

 9

2001.

[4] R. S. Prasad, M. Murray, C. Dovrolis, K. Claffy. Bandwidth estimation: metrics,
measurement techniques, and tools. Published in IEEE Network, November –
December 2003.

[5] Q. He, C. Dovrolis, M. Ammar. On the Predictability of Large Transfer TCP
Throughput. In the Proc. of ACM SIGCOMM. Philadelphia PA, August 2005.

[6] V. Jacobson, M. Karels. Congestion Avoidance and Control. In Proc. of ACM
SIGCOMM, Stanford, August 1988.

[7] H. Jiang, C. Dovrolis. The effect of flow capacities on the burstiness of aggregate
traffic. In Proc. of PAM, France 2004.

[8] R. Wolski, L. Miller, G. Obertelli, M. Swany. Performance Information Services
for Computational Grids. In Resource Management for Grid Computing, Nabrzyski,
J., Schopf, J., and Weglarz, J., editors, Kluwer Publishers, Fall, 2003.

[9] B. Tierney, R. Aydt, D. Gunter, and et al. A grid monitoring architecture.
Technical Report GWD-PERF-16-2, January 2002.

[10] J. C. Bolot. End-to-End Packet Delay and Loss Behavior in the Internet. In
Proceedings of ACM SIGCOM, 1993.

[11] R. L. Carter, M. E. Crovella. Measuring Bottleneck Link Speed in Packet-
Switched Networks. Technical Report BU-CS-96-006, Boston University, 1996.

[12] V. Paxson. End-to-End Internet Packet Dynamics. In Proceedings of ACM
SIGCOMM, 1997.

[13] K. Lai. M. Baker. Measuring Bandwidth. In Proceedings of IEEE INFOCOM,
Mar 1999.

[14] K. Lai, M. Baker. Measuring Link Bandwidths Using a Deterministic Model of
Packet Delay. In Proceedings of ACM SIGCOMM, August 2000.

[15] R. Braden. Requirements for Internet Hosts – Communication Layers. Oct 1989.
IETF RFC 1122.

[16] M. Allman, V. Paxon, W. Stevens. TCP Congestion Control. Apr 1999. IETF
RFC 2581.

[17] H. Jiang, C. Dovrolis, Passive Estimation of TCP Round-Trip Times. ACM
SIGCOMM Computer Communication Review. July 2002.

[18] W. Feng, M. Gardner, M. Fisk, E. Weigle. Automatic Flow-Control Adaptation
for Enhancing Network Performance in Computational Grids. Journal of Grid
Computing (inaugural issue). Vol. 1, No. 1, 2003, pp.63-74.

[19] K. Lai, M. Baker. Nettimer: A Tool for Measureing Bottleneck Link Bandwidth.
In Proceedings of the 3rd USENIX Symposium on Internet Technologies and

 10

Systems, San Francisco, California. March 2001.

[20] V. Paxson. Measurement and Analysis of End-to-End Internet Dynamics. PhD
thesis, University of California, Berkeley, April 1997.

[21] K. Lai, M. Baker. Measuring Bandwidth. In Proceedings of IEEE INFOCOM,
March 1999.

[22] C. Barz, M. Frank, P. Martini, M. Pilz. Receiver-Based Path Capacity Estimation
for TCP. In Proceedings of KIVS'05, Kaiserslautern, Germany. February/March 2005.

[23] L. Chen, A. Nandan, G. Yang M. Y. Sanadidi, M. Gerla. CapProbe based Passive
Capacity Estimation. Technical Report TR040023, UCLA CSD, 2004.

[24] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, D. Towsley. Inferring TCP
connection characteristics through passive measurements. In INFOCOM, IEEE 2004.

[25] G. Lu. X. Li. On the correspondency between tcp acknowledgment packet and
data packet. In Proceedings of ACM SIGCOMM conference on Internet
Measurement, 2003.

[26] B. Veal, K. Li, D. Lowenthal. New Methods for Passive Estimation of TCP
Round-Trip Times. In Proceedings of PAM 2005.

[27] The Austrian Grid Consortium. http://www.austriangrid.at.

[28] http://www.planet-lab.org/

[29] M. Hassan, R. Jain. High Performance TCP/IP Networking: Concepts, Issues,
and Solutions. Prentice-Hall, 2003, ISBN:0130646342.

[30] M. Welzl. Scalable Performance Signalling and Congestion Avoidance. Springer
(originally Kluwer Academic Publishers), August 2003. ISBN 1-4020-7570-7.

[31] S. Floyd, M. Handley, J. Padhye, J. Widmer. Equation-Based Congestion Control
for Unicast Applications. SIGCOMM, August 2000.

