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Abstract

While MIDI is still the most viable music proto-
col, it is not appropriate for use in live networked mu-
sic performances. We propose a network data format
called MINI. It eliminates the disturbing arpeggio ef-
fect caused by network packet delay jitter, and yields
smaller packets that can be further reduced by omit-
ting marginal MIDI features. MIDI–MINI transcoding
is transparent, and works with standard MIDI instru-
ments. We present the MINI design rationale, protocol,
and empirical performance results.

1. Introduction

Musicians have frequently attempted to improvise
together over long-distance network connections. Due
to the real-time player interaction that such “jam ses-
sions” require, network delay and jitter quickly lead
to a total musical communication breakdown between
the players. The internet, however, typically only pro-
vides a “best-effort” service with no guaranteed limits
on latency or jitter. These effects are mainly caused by
growing queues at congested bottleneck routers receiv-
ing more traffic than they can forward.

Thus, to minimize the chance of delays, applications
should reduce the likelihood of causing congestions to
occur, by sending as few and as small packets as possi-
ble. Smaller packets also reduce the time the sender has
to wait until all the data to fill a packet is available. VoIP
applications such as Skype use both strategies, sending
extremely small packets at a very low rate.

MIDI is not as small as it could be, wasting band-
width and increasing the chance of congestion. And
even with today’s gigabit wired connectivity, WiFi con-
nections or multi-player scenarios can quickly lead to

congestion. A MIDI-based real-time protocol should
therefore aim to reduce the amount of data considerably,
even at the cost of some nonessential MIDI features.

We present the MINI (Musical Instrument Network
Interface) format that addresses the problems with
MIDI over long-distance network connections in three
ways: It (1) is smaller than MIDI; (2) encodes chords as
such instead of as a series of individual notes like MIDI,
avoiding the arpeggio effect (see section 2.1); and (3)
provides flexible feature–speed tradeoffs.

Adaptive internet multimedia applications fre-
quently sacrifice features to reduce delay, e.g., by reduc-
ing video frame quality in congested networks [16]. A
reduced quality also lowers the sending rate and hence
packet loss, often leading to a more agreeable result
at the receiver. Although congestion is a dynamic ef-
fect, reacting continuously to the current network state
can lead to undesirable quality fluctuations—users pre-
fer a continuously poor quality over frequent changes
[12, 20]. A successful way to handle this discrepancy
between the dynamic network and its not-so-dynamic
user is to let the user switch between quality levels [2].
MINI also employs this strategy.

We describe the MINI encoding scheme in the next
section, then present a MINI implementation in a GUI
application in section 3, our evaluation in section 4, and
an overview of related work in section 5.

2. MINI

MIDI encodes the onset of each musical note with a
Note-On, and its termination with a Note-Off message.
A chord onset is encoded as a sequence of Note-On
messages, one for each of its notes, and its termination
in the same way. The MIDI standard [1] assumes a local
connection that will not yield audible delays (limiting
the number of MIDI devices that can be daisy-chained,



for example), and that has a fixed bandwidth. Send-
ing MIDI data across the internet violates that specifica-
tion. Network delays between Note-On message pack-
ets belonging to a chord can turn it into an arpeggio—
musically, a highly undesirable effect we call intra-
chord jitter. Delay fluctuations between chords or single
notes (inter-chord jitter) are equally disturbing, and to
be avoided. MINI addresses both issues.

MINI’s scope is restricted to transporting musical
MIDI data. Distributed performances usually require
additional initial agreements on the software level, us-
ing an application specific protocol and format we call
SETUP. A SETUP phase may precede the exchange of
MINI messages, and additional SETUP messages may
occur during the performance. As shown later, MINI
offers several trade-off options between expressiveness
and message size. Some can be changed from one mes-
sage to the next, and are part of the MINI format. Oth-
ers are expected to change rarely or not at all during a
performance, and must be negotiated between the dis-
tributed applications using SETUP messages. MINI
does not define these application-specific messages.

2.1. Chord encoding

To remove intra-chord jitter and save space at the
same time, MINI encodes chords as a single code as
opposed to individual notes. While a musician can start
and stop playing some notes of a chord at different
times, most of them are usually played or muted within
an interval that yields the impression of concurrence for
the listener. This interval can be defined as a fixed de-
lay threshold. Of course, this makes it impossible to
preserve individual notes being played or terminated
within that interval; this is one of the expressiveness–
speed tradeoffs MINI introduces.

The MINI chord encoding scheme considers the
number m of all possible chords with k notes within
a given range of n notes as a kth-order combination of n
elements without repetition or ordering:

m =
(

n
k

)
=

n!
k!(n − k)!

(1)

For example, there are m = 455 different possi-
ble triads (k = 3) in a range of n = 15 notes.
By unambiguously mapping each chord to a number
1...455 in a table, these chords could be encoded using
�log2(455)� = 9 bits.

Encoding and decoding MINI chords via tables
would be straightforward, but require significant mem-
ory. Fortunately, there is no need for tables, as the map-
ping is a simple combinatorial problem—see the im-
plicit unambiguous mapping from higher-dimensional
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Figure 1. Note-On with velocity in MINI.

to one-dimensional arrays in the C programming lan-
guage. For MINI, we use an algorithm [15] that maps an
array representing a unique subset of size K from a set
of size N , bijectively to an integer number, the “rank”
(or order) of the subset. (We used the C encoding and
decoding functions KSUB RANK and KSUB UNRANK

from http://people.scs.fsu.edu/∼burkardt/.) Note that,
just as the C array mapping works without knowing the
size of the array it is working on, this algorithm does
not need N as input.

n and k can be chosen to adapt to the instruments and
network capacity: to connect instruments with a small
tonal range, n can be small, and such instruments usu-
ally also limit k: e.g., k > 10 makes little sense on a
keyboard. The smaller n and k, the smaller the data for-
mat; this can be used to trade comfort against sending
rate when bandwidth becomes scarce.

2.2. Note-On / Note-Off message layout

Fig. 1 shows a sample MINI word. Since each word
can vary in size, we encode its length in bytes in the 3-
bit Size-Code field. Note-Off-Code is 0 for Note-On or
1 for Note-Off messages.

The Voice-Code field indicates the number k of notes
in the encoded chord. Its 4 bits allow for up to of 16
voices. Common instruments such as keyboards will
rarely require more voices. If they do, the chord can
simply be encoded in multiple MINI words. The Chord-
Code is the rank of the chord as defined above.

Velocity is the volume (e.g., keyboard attack or re-
lease speed) of MIDI Note-On and Note-Off messages.
For most instruments, it is difficult to play notes in a
single chord at different velocity; therefore, MINI uses
a single velocity value for the entire chord. We believe
most musicians will be happy to sacrifice these small
nuances in their performance in exchange for smaller
data sets and thus reduced delay.

MIDI encodes velocity in 7 bits, but some instru-
ments cannot produce that many velocity values, and
keyboard experiments showed us that the difference to
using 3 bits is barely audible. In MINI, velocity resolu-
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Figure 2. MINI Timestamp message.

tion is negotiable from 1–7 bits using SETUP messages.

2.3. Timestamp messages

Queueing delay between MINI words causes inter-
chord jitter. To remove it, the receiver needs to restore
the correct timing. Since this requires precise knowl-
edge about when notes were played, the MINI Size-
Code value “001” encodes a Timestamp message (see
Fig. 2). MINI senders can insert it in front of a MINI
Note-On or Note-Off message to specify how much
time has passed since the last MIDI event. It encodes
milliseconds in 13 bits, giving a max. delay of about
8 seconds. Longer delays can be encoded via multiple
Timestamp messages, to be summed up by the receiver.

The MINI receiver can then remove jitter and restore
correct timing by using a playout buffer. Arriving MINI
words are placed in this buffer and played from it with
the right timing. The length of this buffer enables an-
other trade-off: a longer buffer removes more severe
inter-chord jitter, but adds more constant delay before
incoming messages are played. If the goal is to make a
performance as interactive as possible, and inter-chord
jitter is more acceptable than a fixed additional delay,
this feature should not be used.

2.4. Controller messages

In MIDI, Note-On and Note-Off are “Channel Voice
Messages”, bound to one of 16 logical Channels. To
save space, Channels are not included in MINI: one
MINI stream represents one Channel. Multiple chan-
nels can be represented by using the underlying proto-
col’s multiplexing, e.g., as multiple MINI streams on
different UDP ports.

MIDI also defines “System Common Messages” in-
cluding “Song Select” (only relevant for sequencers),
“Tune Request” (irrelevant when musicians do not truly
hear each other), device-dependent “System Exclusive
Messages”, and “System Realtime Messages” to ping a
device (mostly sequencers) to see if it’s still there. None
of these are crucial to typical real-time performances, so
MINI does not incorporate them, saving space.
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Figure 3. MINI pedal Controller Message.
8 possible controllers were setup initially.

MIDI “Controller Messages”, however, encode
sound changes during a note, generated through me-
chanical knobs, sliders, or pickups. They are relevant
for MINI because they affect real-time musical inter-
action. MINI distinguishes between Note-On/Note-Off
and controller messages similarly to MIDI. If all three
initial bits (the Size-Code) are zero, the remaining MINI
word is interpreted as follows:

• The next n Controller-Code bits identify the con-
troller. n is initially negotiated between 1 and 3.

• The m rightmost bits encode the conroller value;
m is controller-specific.

• Since MINI words are a multiple of 8 bits, we in-
sert padding bits between the two values as needed.

Fig. 3 shows a sample message with n = 3 and m = 1.
MIDI allows for up to 128 different controller types.

Many of these are still undefined, and some controllers
are quite exotic and not available on most devices or
soundcards. MINI includes the following subset:

Program Change: 7 bits select an instrument sound
(“patch”). They are encoded as in MIDI.

Pitch Bend, Modulation, Volume, Reverb, Chorus:
In MIDI, these controllers have a resolution of 7
or 14 bits. MINI maps them all to 7 bits.

Sustain Pedal, Sostenuto Pedal: MIDI wastes 7 bits
to encode these binary pedal values (0–63=off; 64–
127=on); MINI uses one bit.

While MIDI actually defines Program Change and
Pitch Bend as “Channel Voice Messages”, MINI groups
them together with controller messages for simplicity.

3. Implementation

Based on MINI, we implemented Netmusic
(http://www.welzl.at/research/projects/netmusic). It was
designed as a fun tool to jam together over the internet,



Figure 4. Controller detection window

but offering all the features to fully exploit the capa-
bilities of MINI. Netmusic’s core components were
written in C for performance reasons, its user interface
in Java. It was developed under Linux and tested with a
Fedora Core 4 system (kernel v.2.6.17.1-2142). Here is
a rough overview of its functionality:

• It connects to another host and maintains a TCP
connection to exchange parameters, start and end
the session. MINI data is exchanged via UDP.

• It captures MIDI via the ALSA(http://www.alsa-
project.org) library, regarding notes within a user-
defined interval as chords. It then converts them to
MINI and sends them to the other host.

• It converts incoming MINI messages to MIDI im-
mediately, and plays them via ALSA (i.e., without
buffering or Timestamp messages). ALSA lets the
user patch MIDI ports to hardware or software in-
struments, so the newly generated MIDI messages
can be played on a connected MIDI device or a
software synthesizer, invisible to Netmusic.

• The user can adjust MINI’s feature–sending-rate
trade-offs via a GUI. It first asks him to activate
all controllers (Fig. 4) to determine the number
of encoding bits needed. Controllers become vis-
ible as they are operated. Then they can be se-
lected and configured (Fig. 5): e.g., the right-hand
slider controls resolution. This also shows a new
space-saving NetMusic feature: leaving out Note-
Off messages for instruments such as a xylophone
whose sound ends automatically. This application-
specific mechanism is negotiated via SETUP mes-
sages over the TCP connection.

The GUI provides feedback to the user in 4 pan-
els: a Property Window shows network details (time
connected, IP addresses, port numbers). An on-screen

Figure 5. Options window

Hub 1 Hub 2

Linux

Router

Sender Monitor 1 Monitor 2 Receiver

Figure 6. The testbed

keyboard shows notes being played. A Controller Win-
dow shows selected controllers, and a Log Window lists
setup data, parameter changes and error messages.

4. Test setup and results

We tested MINI against MIDI using our Netmu-
sic application and a local testbed to simulate net-
work congestion that has been used successfully before
([14],[4]). We used a unidirectional flow scenario (as if
one musician plays and the other one just listens). This
scenario is valid because a flow in the other direction is
completely independent of the flow considered.

We used 5 PCs connected via 100Mbps Ethernet
(Fig. 6). Monitor 1&2 created and received background
traffic. Monitor 1 also logged traffic as sent, i.e., be-
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fore congestion; Monitor 2 logged it as received. Packet
drops become easy to see as gaps between the two
lines showing the rates perceived by the two Monitors
(Fig. 7). Peaks on the two lines, however, can differ due
to the delay in the router’s queue when congested.

To cause congestion, the maximum traffic rate was
limited using the tc (traffic control) Linux command and
Class-Based Queuing with only one class for the PC on
the receiver-side link of the router. We did not use To-
ken Buckets as they influence traffic characteristics [5].
The monitors measured traffic over hubs 1 and 2 with
tcpdump (http://www.tcpdump.org). Loss was calculated
as bytes sent (logged by Monitor 1) minus throughput
(logged by Monitor 2).

mgen (http://mgen.pf.itd.nrl.navy.mil/mgen.html) gen-
erated a constant-bitrate UDP data flow of 100-byte
packets as background traffic. It was sent from the
router to Monitor 2, thus avoiding collisions but con-
gesting the router’s outgoing queue. We generated 11
classes of background traffic for 50s each, starting after
25s and consisting of 10–100 (in steps of 10) and 120
packets/s, respectively. These rates were chosen for our
Netmusic application and network setup to allow inves-
tigating their impact on the application behavior. Ini-
tial mgen packets were used to synchronize the test ma-
chines. For reproducability, we always transmitted the
1:46 piece “Préludes Nr. 4, Largo, Op. 28” by Frédéric
Chopin which has frequent chords. With background
traffic of 60–80 packets/s, the arpeggio effect and thus
degradation of MIDI becomes quite clear to the listener.

Fig. 7 shows the rates perceived by Monitors 1 and
2 with a background traffic of 80 packets/s. Clearly,
for MIDI, the incoming is much higher than the outgo-
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ing rate, so packets were dropped. The outlier of the
Monitor 2 rate at the end of background traffic after 75s
results from the router’s queue emptying. The diagram
also shows that the rate for MINI is much lower, and
that its lines from Monitors 1 and 2 are close to each
other, so there is little queuing delay or packet loss.

Fig. 8 and 9 show cumulative results (average delay
and total loss) of all our studies; tests with traffic of 0–
60 packets/s are not included in Fig. 9 as no packets
were dropped. They clearly show that MINI not only
fulfils its primary goal of reducing delays in real-time
internet jams, but also that packet loss is reduced—an
important outcome as lost packets mean lost notes or
controller messages. These results were confirmed by
the significantly enhanced quality perceived when lis-
tening to MINI and MIDI in our tests.



5. Conclusion and related work

The idea of playing music together over a network is
far from new. We documented the state of the art in this
field in 1998 [19]; back then, existing projects already
ranged from Frank Sinatra singing with U2’s Bono
via a dedicated fiber link, to the “Res Rocket” (later
“Rocket Power”) system which was even linked to the
popular “Cubase VST” sequencer for a while. In Res
Rocket, musicians collaborated by editing sequencer
tracks in real-time, but interactivity was limited, as
musical updates were only disseminated when a button
was clicked. Res Rocket is not available anymore (see
http://www.jamwith.us/about us/rocket history.shtml),
and current music-sharing portals are even less inter-
active [13], [18], [7], [3]. Their existence and success
([13] reports 20000+ members) shows the ongoing
demand of distributed musicians to collaborate.

Of particular interest is the “Networked Musical Per-
formance (NMP)” [8] system that transmits MIDI over
IP using RTP [17] by means of a new RTP packetization
format [9]. It is specified in [11, 10]. Delayed or lost
packets are compensated for by adding timestamps at
the sender and using them to properly handle problems
at the receiver. For example, if a note is delayed, it may
sometimes be better not to play it at all, thereby mak-
ing the outcome sound closer to mistakes produced by
imperfect musicians than to the unpleasant effects that
are produced by data-starved audio codecs. MPEG-4
Structured Audio (SA) [6] is used for music synthesis.

NMP takes an interesting approach: it does not
proactively reduce latency or packet loss like MINI;
its additional RTP header even slightly increases the
chance of packet loss during congestion. But MINI
does not include the retroactive compensation of NMP.
By avoiding to prescribe such mechanisms, we ensured
that MINI is flexible: we intend to implement a MINI
based application that includes these NMP features.
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