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Abstract

According to the International Technology Roadmap for
Semiconductors (ITRS), before the end of this decade we
will be entering the era of a billion transistors on a single
chip. It is being stated that soon we will have a chip of 50-
100 nm comprising around 4 billion transistors operating
at a frequency of 10 Ghz. Such a development means that
in the near future we probably have devices with such com-
plex functions ranging from mere mobile phones to mobile
devices controlling satellite functions. But developing such
kind of chips is not an easy task as the number of transistors
increases on-chip, and so does the complexity of integrat-
ing them. Today’s SoCs use shared or dedicated buses to
interconnect the communicating on-chip resources. How-
ever, these buses are not scalable beyond a certain limit.
In this case, the current interconnect infrastructure will be-
come a bottleneck for the development of billion transistor
chips. Hence, in this tutorial, we will try to highlight a new
design paradigm that has been proposed to counter the inef-
ficiency of buses in future SoCs. This new design paradigm
has been termed with a variety of titles, but the most com-
mon and agreed upon one is Networks on Chips (NoCs). We
will show that how this paradigm shift from ordinary buses
to networks on chips can make the kind of SoCs mentioned
above very much possible.
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1. Introduction

Chip integration has reached a stage where a complete
system can be placed in a single chip. When we say com-
plete system, we mean all the required ingredients that make
up a specialized kind of application on a single silicon sub-
strate. This integration has been made possible because of
the rapid developments in the field of VLSI designs; this is
primarily used in embedded systems.

Thus, in simple terms an SoC can be defined as “an IC,

designed by stitching together multiple stand-alone VLSI
designs to provide full functionality for an application [1].”
While designing an SoC, a vendor may use a library of cores
designed by external designers in addition to using cores
from in-house libraries. Cores are basically pre-designed
models of complex functions termed as Intellectual Prop-
erty Blocks (IP Blocks), Virtual Components (VC) or sim-
ply micros. Since the design of an SoC comprises cores
from different sources /vendors, we can say that an SoC is
completely heterogeneous, and that is one of the key issues
which complicates its design process.
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Figure 1. SoC – [1]

A generalized form of today’s SoC architectures is de-
picted in figure 1. This figure shows the common compo-
nents used in current SoCs; SRAMS, DRAMS, Flash mem-
ory, ROM, DSPs, 2D/3D graphics, and interface cores such
as PCI, USB and UART. It should be noted that all these
components may belong to different libraries of cores and
may belong to different vendors. Also, their organization
on the chip depends upon the application they are designed
for – Application Specific Integrated Circuit (ASIC). A few
examples of today’s core based SoCs include GSM mo-
bile phones, single chip digital/videocams, GPS controllers,
smart pager ASICs etc.

However, the present SoC architecture doesn’t suffice for
the future needs, particularly in the terms of their intercon-
nect design due to their poor scalability and inefficiency for
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handling large number of partners (we will elaborate on this
in section 2). Hence, from here we move on toward our ac-
tual topic of discussion, that is, Network on chips or more
commonly called NoCs.

A NoC is percieved as a collection of computational,
storage and I/O resources on-chip that are connected with
each other via a network of routers or switches instead of
being connected with point to point wires. These resources
communicate with each other using data packets that are
routed through the network in the same manner as is done
in traditional networks [2]. It is clear from the definition
that we need to employ highly sophisticated and researched
methodologies from traditional computer networks and im-
plement them on chip. But why? In order to elaborate on
this question, we have to explore the motivating factors that
are compelling the researchers and designers to move to-
ward the adoption of NoC architectures for future SoCs.

The area of NoC is still in its infancy, which is one of
the reasons why there are various names for the same thing;
some call it on-chip networks, some networks on silicon,
but the majority agrees upon “Networks on Chips” (NoCs).
However, we will be using these terminologies interchange-
ably throughout our tutorial.

2 Motivations

As projected by ITRS [3], around four billion transistors
will be accommodated by the end of this decade. Although
it sounds incredible, a number of factors are posing hin-
drance to achieve billion transistor chip in future. In the
following we discuss some of the issues that need to be
overcome before we can have a real chip with billions of
transistors.

2.1 Poor scalability of standard buses

The primary interconnection mechanism behind today’s
SoCs are shared buses which help to time-share wires
among the communicating partners and lead to reduction
of I/O pins in cores, hence leading to a simplified wiring
scheme. Previously, direct pin connections were used to
connect various cores on a chip; this lead to a large number
of pins for each core. Moreover, as the number of cores on-
chip increased, so did the pins, thus, leading large routing
time and area, and unpredictable delays in signals and sig-
nal quality. To simplify the structure, buses were introduced
which proved to be a better solution than their predecessors
in terms of reduced signal delays and signal quality, and
controlled routing time. However, it has been observed that
buses cannot be shared beyond 5 - 10 partners, hence, mak-
ing scalability of the communication paradigm in SoCs a
major concern[4].
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Figure 2. Moore’s Law

2.2 Design productivity gap

It was in 1965 that Gordon Moore, co-founder of Intel
published his all-famous paper in which he predicted that
the capacity of integrated circuits will be doubled every 18
- 20 months (also called Moore’s Law) [5]. It has been
observed over the past years that current technology is not
keeping pace with Moore’s prediction resulting in a “design
productivity gap” which is increasing at a pace of approx-
imately 20% every year. This effect is shown in figure 2.
This design productivity gap is not only because of more
gates, and functionality and testability of the chips which
were the only issues in the beginning, but many other factors
like wire delay, power management, embedded software,
more design choices, and signal integrity which are making
the entire design process more time consuming and com-
plex. In order to cope with the productivity gap, we need
exponentially growing design teams or/and design time to
design and implement systems which fit into a single IC;
this is very unrealistic and rather impractical.

2.3 Difficult to maintain global synchrony

One of the major problems of growing chips is the global
clock. It is becoming increasingly difficult to synchronize
the clock signal traveling across the entire chip. This, in
turn, is not only increasing the clock skew problem but
also affecting the power consumption which is reaching
unacceptable limits. One remedy of the problem is to
adopt “Globally Asynchronous and Locally Synchronous
(GALS)” paradigm [6]. However, in such a case, there re-
mains no coordination among the on-chip communicating
partners, hence, making chip a collection of distributed sys-
tem.

2.4 Heterogeneity

A significant characteristic of SoCs is heterogeneity –
components from different vendors lay on the same chip.
Following the prediction of ITRS that the silicon substrate
is becoming capable of absorbing more and more compo-
nents, chips of the future are going to be more complex than
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they are. Components having different functions and com-
pletely novel features will be integrated on the same silicon
die, even though they are designed by different design teams
on a variety of platforms. Finally, all these heterogeneous
components of totally distinct characteristics (importantly,
even analog devices can be included in addition to digital
ones) have to be placed on a single chip, which makes the
task quite complex.

3 Networks on Chips (NoCs)

After realizing the inefficiency of traditional buses in
SoCs, in conjunction with so many other factors, the design-
ers of SoCs have come to a cross-road where they meet the
computer architecture designers who are always interested
in finding dynamic and scalable architectures for building
microprocessors. The scalability and wide success of the
Internet has attracted the attention of computer architecture
as well as SoC designers and influenced them to borrow the
idea of using packet based switching networks for the de-
sign of future SoC communication infrastructure.

It is an understood fact that the actual reason behind
success of the Internet and its scalability lies in a well de-
fined protocol stack; the idea was to decouple communi-
cation from computation. Packet switched communication
not only provides high scalability, but also facilitates reuse
of the communication architecture. The two major prob-
lems faced by SoC designers – re-usability and scalabil-
ity – can, therefore well be addressed by the adoption of
packet switched communication infrastructure for SoC in-
terconnects. Also, from a business point of view, it is im-
portant to reduce the design time by adopting reuse not only
at the computational level but also reuse of the communica-
tion structure. This will in turn lower the time to market
new products with ease. Keeping in view this idea of the
Internet, many researchers have proposed communication
architectures based upon packet switched on chip networks
for connecting components in the future SoCs [7], [8], [9],
[10].

Another important aspect of NoCs is that they decou-
ple computation from communication, which is essential
for chips that contain billions of transistors. Again, the
idea comes from traditional networks such as the Internet,
where the communication system is based upon a protocol
stack irrespective of the number of the communicating part-
ners. Likewise, the communication infrastructure in NoCs
will be designed using a protocol stack which provides well
defined interfaces separating communication service usage
from service implementation. This means that instead of
connecting high level modules (like processors, DSPs, con-
trollers etc.) by routing dedicated wires, they are connected
to a network that routes packets between them – as cap-
tioned in [7] “Route Packets not wires”.

Figure 3. 2D mesh based NoC

4 NoC model

Now, since we already know that NoCs is the most ap-
propriate design choice to develop the future SoCs, the next
step is to discuss the design of the NoC itself. Since the
area of NoCs is really new, it provides us with an opportu-
nity to create things on a clean slate in order to obtain an
optimal design. The immense amount of research that is al-
ready being conducted in the Internet has been considerably
used in defining the structure of NoCs by the researchers. In
the following passages we will discuss proposed topologies,
protocols, switching and routing mechanisms for NoCs. In
the following passages we will discuss proposed topologies,
protocols, switching and routing mechanisms for NoCs.

4.1 Typical NoC topology

There are quite a few topologies proposed for NoCs in-
cluding fat tree, honeycomb, 2D mesh etc.; we will discuss
the most common and agreed upon topology – 2D mesh –
in our tutorial because of its simplicity. Consider Figure
3 which shows a simple mesh topology where circles rep-
resent switches while squares are resources. A resource is
a computational unit; it can be a processor, memory, DSP
core etc, whereas switches route and buffer messages be-
tween resources. It can be seen from the figure that al-
most each switch is directly connected to neighboring four
switches (except for the ones at the edges). The commu-
nication channel consists of two one-directional point-to-
point buses between two neighboring switches or a switch
and a resource. It is expected that, as the technology grows
with time, the number and size of resources will also grow,
resulting in growth of bandwidth of switch-to-switch or
switch-to-resource links, but network wide communication
will remain unaffected.
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Figure 4. Protocol stack for NoC’s – [11]

5 Proposed protocol stack for NoCs

In order to achieve a scalable communication paradigm
for NoCs, a protocol stack in comparison to OSI model has
been proposed in [11]. This model is shown in figure 4.
It can be observed from the figure that the proposed pro-
tocol stack is mainly composed of three layers; Physical,
Architecture and Control, and Software. The Physical layer
deals with signal voltages, slopes and wire sizing in terms
of SoCs. Wires are the physical realization of communica-
tion in the SoCs. Then comes the Architecture and Control
layer, which is the most important layer in SoC stack as it
encompasses Data Link, Network and Transport layers. In
this part, the architecture defines the physical layout of the
network resources, whereas the control protocols define the
ways in which these network architectures can be used dur-
ing system operations. Most of the research is happening
at this level in SoCs. Finally, we have the software layer
which takes care of the system and application software.

5.1 Switching techniques / Flow control

There are different techniques that are used to switch
packets between nodes in a network. The most popular ones
include store-and-forward, virtual cut-through and worm-
hole switching. In what follows, we will discuss these tech-
niques in brief and see which one is more appropriate for
NoCs based on mesh.

• Store-and-Forward switching: This is the most popu-
lar packet switching technique in computer networks.
Here, parts of the entire packet are stored at the re-
ceiving router until the entire packet is received, af-
ter which it is forwarded to the next router in the
path. In this case, enough buffer space is required at
each routers to accommodate the entire packet. Also,
for large packets, this method introduces extra packet
delays in router. Since buffer resources on-chip are
quite expensive, besides the fact that this technique

needs more power consumption which is undesirable
for NoCs, Store-and-forward is infeasible for on-chip
networks.

• Virtual Cut-through Switching: This technique is pro-
posed to reduce the packet delay caused by the store-
and-forward switching. In this case, the packet is not
stored in its entirety in the router, but can be forwarded
to the next hop as soon as it is received by the current
router. However, if the next hop router is not available,
then the current router has to store it in complete form.

• Wormhole switching: This switching mechanism was
basically developed for parallel processors. The ad-
vantage of wormhole flow control is that it achieves
minimum network delay and needs less buffer space.
In this technique, the packets are further split into
small units called flits which are immediately for-
warded upon arrival. The flits of a packet do not need
to be stored in a single router, hence reducing the need
for large buffer space. It is for this reason termed as the
best candidate for on-chip interconnection networks.

Having inspected the three popular switching tech-
niques, we can now easily say that due to the memory and
buffer constraints on-chip, wormhole switching seems to be
the best option for NoCs. Here, it is important to clar-
ify the difference between packet switching (forwarding)
and routing (which is discussed in section 5.2) – these two
terms are sometimes intermixed, thus creating a confused
picture. In traditional computer networks, packet switch-
ing/forwarding is mainly concerned with moving a packet
from an input port of a router to the output. Routing deals
with determining the entire path a packet may take from
source to destination. Confusingly, the term “routing func-
tion” sometimes denotes the packet forwarding method in
the context of NoCs.

5.2 Routing in NoCs

Routing is the process of moving information from a
source to a designated target. This term is very common in
the Internet. Routing can be static or dynamic. Static rout-
ing is managed by an administrator manually, and is suit-
able for networks where network traffic is predictable and
relatively simple, which is a rare case in the Internet. Dy-
namic routing, as the name suggests, is used to dynamically
discover routes in case of path changes. Due to the regular
structure and on-chip memory constraints static routing is
more feasible for NoCs. However, in case of path failures,
adaptive routing can be introduced but special care must be
taken as to avoid excessive use of buffers or logic on-chip.

A contention based hot potato routing method has been
suggested for NoCs [12]. This technique can predict about
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contention in the forthcoming stages by using direct con-
nections with the adjacent node. Here packets are divided
into small units – flits, so they can be easily handled us-
ing limited buffers. Routes that lead towards the destina-
tion are termed as profitable routes. Alternatively, a route
that leads a packet away from the destination is a misroute.
Ideally, a packet should follow the profitable route to reach
a destination. However, in cases when profitable routes are
congested and/or their queues are too long, following a mis-
route might offer less delay in reaching the destination.

6 Future of NoCs

We can see from our previous discussion that a lot of re-
search has already been done in the Architecture and Con-
trol layer of NoCs. This provides an opportunity to extend
the amount of research to those areas which are not ad-
dressed very frequently but can prove to be vital for design-
ing viable NoCs for future applications. In the following,
we will see some important issues that will have a signifi-
cant impact on the future of NoCs.

6.1 Reliability

SoCs are mainly designed for consumer products – the
main issue related to these products is reliability. As the
number of transistors increase on a chip, so does the prob-
ability of faults, making reliability a major issue [13]. Fail-
ures can occur due to a variety of reasons, for example,
crosstalk faults can lead to permanent or transient failures
of the communication links [14]. In addition to this, imple-
menting packet-based communication on-chip brings new
reliability related challenges along with it. A transient fault
may cause a bit-flip n the packet header due to which packet
get routed to a wrong destination. Similarly, in case of
permanent faults, one or many links may go down, caus-
ing congestion in the alternate paths. Thus, it is extremely
important to deploy mechanisms in NoCs that can han-
dle both permanent and transient errors to ensure reliable
packet delivery over shared communication channels. In
[15], various reasons affecting the links and routers on-chip
are discussed and a model of dynamic routing for NoCs is
proposed. We have provided some preliminary results to
reroute packets on alternate paths in case of link failures in
[16].

6.2 Quality of Service

We know that on-chip networks are designed for a pre-
known set of computing resources with pre-defined traf-
fic patterns, as compared to traditional networks which are
built for future growth and expansion. From an ordinary

user’s perspective, behavior of any application must be pre-
dictable. Although to guarantee the highest level of pre-
dictability is minimal, some degree of fitness for purpose is
always assumed. Also, in terms of NoCs, which are made
for main stream consumer products, such a degree of ex-
pectation becomes inevitable. For example, a mobile phone
should provide a better voice and video quality to its user
than contemporaries.

From the Internet, we learned that a service can theoret-
ically be “guaranteed” if a commitment is made, otherwise
it is termed as “best effort”. In case of SoCs both kinds
of services are essential. An SoC can accommodate traffic
ranging from real time data which needs to be delivered in
a stipulated amount of time with no or minimum distortion
to regular data streams which follow no such constraints.
However, providing separate infrastructure for both the ser-
vices would mean to waste precious resources on-chip. In-
stead, a combined best effort and guaranteed services archi-
tecture has been proposed in [17] for NoCs. This seems to
be quite a feasible solution considering the efficient utiliza-
tion of resources on-chip.

6.3 Software model

As discussed in section 5, above the architecture and
control layer, we have the software layer that encompasses
the application and system software categories. Program-
ming model gives an abstract view of the hardware to appli-
cation developers. In parallel programming, there are two
programming models – shared memory and message pass-
ing. In the shared memory model communication is implicit
with shared address space, whereas in the message passing
model, processors have private memories and communica-
tion occurs through explicit messages [18]. In context of
NoCs, where computational resources represent a variety
of Intellectual Property (IP) blocks, message passing seems
to be a choice of programming model for NoC application
software [11]. This model, despite being harder to write,
is more efficient in terms of scalability and performance in
heterogeneous environments.

Similarly, in terms of system software, a standardized set
of operating system services and interfaces needs to be de-
veloped. However, a few questions are still open – like hav-
ing a purely distributed kind of OS versus centralized one.
In a distributed system, each resource has an independent
OS running; such a system is just like LAN on a chip, but
it has very high overhead. On the other hand, in case of
a centralized OS, a special processor is meant to run the
OS services, but here the problem of scalability comes into
play: will the running processor be enough when the system
grows or will we need more processors for it?
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7 Conclusion

The NoC methodology will likely be the best solution
counter the increasing complexity of future SoCs. Form
the above discussion it can also be concluded that fu-
ture SoCs will be platform-based because of short-time-to-
market constraints. Development of NoCs will be a huge
effort as it involves reuse at all levels; reuse of architecture,
hardware and software. Also, it includes reuse of differ-
ent languages, methods, tools and practices during develop-
ment.

Although the potential of NoCs is tremendous, it would
be rather unlikely to fulfill all its promises before the devel-
opment of some of its key components like a reliable NoC
architecture, assurance of quality of service, and a viable
NoC software model. Clearly, it can be concluded that there
is a lot of need and scope for research in this area.
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