
IRV–Tool

Christian Sternagel

2004-01-12

1

Abstract

The IRV–Tool (Internet Routing Visualization) is a tool designed to
give students easy access to the fundamentals of routing. Two routing
protocols and some of their features are implemented in the simulator.
In the following sections, the usage of the IRV–Tool and its design are
explained.

2

Contents

1 Routing In The Internet 4

2 RIP - Distance Vector Routing 4
2.1 How It Works . 4

2.1.1 The Bouncing Effect 4
2.1.2 Counting To Infinity 5

2.2 Enhancements . 5

3 OSPF - Link State Routing 6
3.1 How It Works . 6

3.1.1 The Hello Protocol . 6
3.1.2 The Exchange Protocol 7
3.1.3 The Flooding Protocol 7

3.2 Features . 7

4 The Class Structure Of The IRV–Tool 8

5 RIP In The IRV–Tool 13

6 OSPF In The IRV–Tool 14

A IRV–Tool Documentation 17
A.1 Introduction . 17
A.2 Installation . 17
A.3 Description . 19

A.3.1 A Simple Example . 19
A.3.2 The User Interface . 21
A.3.3 Edit Options . 22
A.3.4 Saving A Topology As A Bitmap 23
A.3.5 Options . 23
A.3.6 Simulating With The IRV–Tool 25
A.3.7 The Terminal . 25

3

1 Routing In The Internet

Routing is the technique by which data is moved across an (inter–)network
from a source to a destination. Along the way, at least one intermediate
node is situated. Routing occurs at Layer 3 of the OSI reference model
(the network layer). Thus routing is the structure that glues together the
internet.

2 RIP - Distance Vector Routing

The most widely used ’interior gateway protocol’ in the internet is probably
RIP – which stands for Routing Information Protocol. It is a very simple
protocol of the ’distance vector’ family (DV). These protocols are based on
a shortest path computation algorithm described by R. E. Bellman (see also
[1]). Hence they are sometimes referred to as ’Bellman-Ford’ protocols.

2.1 How It Works

Assume a simple network is initialized (’cold start’). After startup every
node (e.g. a router in the internet) has only ’local knowledge’, i.e. they
remember their own address and the links (connections) to which they are
attached. This information is stored in a so called routing table (consist-
ing of tuples [to, via connection, cost]). At regular intervals every node
sends its local data (the entries of the routing table, called ’distance vector’
[DV]) across all of its connections, reaching all its direct neighbors (’adjacent
nodes’). Crossing a connection has typically a cost (or metric) of 1. There-
fore reaching a node that is two connections away has a cost of 2 etc. The
above mentioned shortest path computing algorithm considers these costs
for calculating a shortest path to a given destination. So after the whole
procedure converges every, node ’knows’ on which of its connections to send
a packet for a certain destination to get the packet there with minimum
cost.

In a static network (where the topology never changes) the above pro-
cedure works correctly. But a realistic network is not static: nodes are
removed, new ones are added or a link breaks for indefinite time. Hence a
routing protocol has to respond to topology changes. RIP solves this prob-
lem by regularly sending updates. But sometimes these updates are not
enough.

2.1.1 The Bouncing Effect

If there are connections of different costs in a network, it is possible, that
after a link break, erroneous DVs are spread across it (e.g. if an update
is sent before a node notices a link break) thus leading to an effect known

4

as ’bouncing effect’, where node A sends all packets addressed to C over
connection 1 (to node B) and B sends all packets addressed to C over con-
nection 1 (to node A). The routing tables now include a loop and packets
will bounce between A and B back and forth until their ’time to live’ expires.
This bouncing effect will last until the network converges on a new, coherent
version of the routing table. Sometimes this can last very long.

2.1.2 Counting To Infinity

There are situations, where the cost of a connection at each exchange will
just increase. This process is called ’counting to infinity’ and can only
be stopped by a convention on the representation of infinity as some very
large distance: i.e., larger than the length of the worst possible path in the
network. When the distance has reached this value, the entry in the table
is considered infinitely remote and thus unreachable.

2.2 Enhancements

There are two enhancements to improve RIP. The bouncing effect and the
long time taken for counting to infinity are very undesirable features of the
distance vector protocols. Therefore ’split horizon’ and ’triggered updates’
were implemented in RIP.

Split Horizon: It is based on a very simple precaution: if node A is rout-
ing packets addressed to C through node B, it makes no sense for B to
try to reach C through A. Thus it makes no sense for A to announce
to B that C is only a short distance from A. The change is as follows:
Instead of broadcasting the whole routing table of a node to all of
its neighbors, different versions are send to each of them. There are
two versions of ’split horizon’, namely ’split horizon’ and ’split hori-
zon with poisonous reverse’. Using ’split horizon’, a node sends only
those entries of its routing table to a neighbor, that were not received
from it (which means, that this neighbor is ’closer’ to the destination
mentioned in the entry than the node itself). Using ’split horizon with
poisonous reverse’ with every update a DV consisting of the whole
routing table is sent to all neighbors, but if an entry was received from
the neighbor which it is sent to now, the cost of this tuple is set to INF
(’infinity’) thus breaking loops more swiftly by being more aggressive.

Triggered Updates: Without triggered updates, the DVs are sent to all
neighbors regularly after a given time slice (for RIP it is 30 seconds; see
[2]), therefore it takes sometimes very long to solve loops (by counting
to infinity). The idea of ’triggered updates’ is to send DVs to all
neighbors every time, an entry of the local routing table has changed,
thus responding faster to topology changes.

5

3 OSPF - Link State Routing

RIP is both limited and simple. OSPF (open shortest path first), on the
other hand, is both very powerful and somewhat complex. OSPF is a mem-
ber of the ’link state’ (LS) family. Instead of exchanging distances to desti-
nations, the nodes will all maintain a ’map’ of the whole network that will
be updated quickly after any change in the topology. These maps (the link
state database) can be used to compute more accurate routes than can be
computed with the distance vector protocols.

3.1 How It Works

Link state protocols require each router to maintain at least a partial map
of the network. When a network link (connection) changes state (up to
down or vice versa), a notification, called a link state advertisement (LSA)
is ’flooded’ throughout the network. All the routers note the change and
recompute their routes accordingly. This method is more reliable, easier to
debug and less bandwidth–intensive than DV. It is also more complex and
more compute– and memory–intensive.

All nodes have a copy of the network map, which is regularly updated.
The map is represented by a database and updates are ’flooded’ to the net-
work nodes using the flooding protocol. When the network is initialized, it is
necessary to ’bring up adjacencies’ (which is handled by the hello protocol)
and afterwards exchange topology data in a way, that each node has a map
of the whole topology (which is handled by the exchange protocol).

If a packet arrives at the router, the local map along with a ’shortest
path first’ algorithm is used to determine the next hop (the connection to
which the packet should be forwarded) for that packet.

3.1.1 The Hello Protocol

Assume a network that is separated into two smaller networks (A and B)
if a certain link fails. With OSPF each of these two networks will evolve
their own map of the topology. As long as the two networks stay separated,
that is not important; every network computes the correct shortest paths
for ’their’ nodes. But what happens if A and B reconnect (at this point,
B has no knowledge about any changes in A during the interval in that A
and B were separated and vice versa). Merely distributing the new link
information would not be sufficient. Establishing connectivity between two
nodes requires more than just sending one database record (as it happens
in the flooding protocol). It must be guaranteed, that A and B end up with
aligned databases. This process is called ’bringing up adjacencies’ in OSPF.
The hello protocol is used for two purposes:

• to check that connections are operational, and

6

• to find new adjacent routers (neighbors).

After that, a synchronization of the link state databases of a newly found
neighbor and the router that found it is necessary. This task is adopted by
the exchange protocol.

3.1.2 The Exchange Protocol

As mentioned above, the exchange protocol is responsible for the synchro-
nization of the link state databases of two routers, after they have estab-
lished two-way connectivity on a point-to-point link via the hello protocol.
The initial synchronization is performed through the ’exchange’ protocol;
the ’flooding’ protocol will then be used to maintain the two databases in
synchronization.

3.1.3 The Flooding Protocol

When a connection changes state, the router responsible for that connection
(sometimes 2 routers) will issue a new version of the connection state. This
is achieved by using the flooding protocol. Every router receiving a flooding
packet computes the included information and (if the packet is valid) for-
wards it to all of his connections, except the one from which the packet was
received. That way topology changes are propagated very swiftly across the
whole network.

3.2 Features

There is one feature (also supported by the IRV–Tool) that is presented in
[3]:

Equal-Cost Multipath: Sometimes the discussion about shortest paths
is simplified by considering only a single route to any destination (e.g.
RIP). In reality, if multiple equal-cost routes to a destination exist,
they should be used to improve performance and reduce congestion.
With equal-cost multipath a router potentially has several available
next hops towards any given destination.

7

4 The Class Structure Of The IRV–Tool

Figure 1: The Class Structure Of The IRV–Tool

Address is used to generate continuous addresses for nodes and connec-
tions.

Clock is a graphical component that is used to display an integer (inter-
preted as seconds) in either of the following ways (the first is de-
fault): the number of seconds with maximal seven digits or the time as
’hh:mm:ss’. The mode is switched by clicking on the display. This class
is used by the Simulator, the RemoteMenu and the IRVController.

Computer is implemented by Host and Node and by itself implements the
Paintable interface (see figure 4). It represents all attributes that are
shared by routers and hosts.

Connection implements also Paintable. Together with Router and Host
these are the graphical represented components of a network topology.
As you can see in figure 4, a Connection always has two Computers
(nodes) at its end-points.

ConnectionEditPane is an interactive dialog that can be invoked by ei-
ther right-clicking on a connection or left-clicking on it, after the Edit–

8

Figure 2: The Paintable Interface

Tool (see section A.3.2) has been chosen. All possible modifications
of a Connection are achieved with this dialog (or optional with the
Terminal).

Consts holds all constants that are used by the IRV–Tool. Those that
concern a certain routing protocol can be modified via the menu (see
section A.3.2).

DistanceVectorTable is the implementation of RIP used in the IRV–Tool.
It implements the RoutingTable interface.

EditPane is the parent class of all edit panels (ConnectionEditPane, HostE-
ditPane, RouterEditPane).

Host represents a ’normal’ PC or simply a computer that is not involved
in routing respectively. It implements the Computer interface.

HostEditPane is invoked like the ConnectionEditPane and can be used to
change properties of a certain Host.

InfoPane serves as a Window, where text (in the IRV–Tool the GNU li-
cense) can be shown.

9

Figure 3: The Routing Table Interface

IPPackage represents all packets that are not involved in routing (e.g.
ping, traceroute and all messages). It is a child class of Package.

IRVController is the central post of control, where all the callback func-
tions for event listeners are implemented. As shown in figure 4 the
IRVController has access to the Simulator and vice versa.

IRVDialog is used to wrap all edit panels.

IRVFilter is a FileFilter, that only accepts *.IRV files.

IRVFrame acts as the main window for the IRV–Tool and aligns all other
graphical components (see also section A.3.2).

JPGFilter matches the IRVFilter except that it only accepts *.JPG files.
This class is used when a topology is saved as a bitmap.

LinkStateTable is the implementation for the OSPF protocol. It uses
(depending on its configuration) a certain SPFAlgorithm (see figure 4)
and implements the RoutingTable interface.

Neighbor represents the nodes that are directly connected to a OSPF
router. In the implementation of OSPF it is used for the process
called ’bringing up adjacencies’.

10

OSPFExchangePackage is used to exchange data of two link state tables
that should be synchronized.

OSPFFloodingPackage is used to ’flood’ new information (like after a
state change of a connection) as quickly as possible across the network.

OSPFHelloPackage is used to detect neighbors and initializes an ex-
change (by OSPFExchangePackages) if a new one was found.

OSPFVariableEditPane is invoked from the menu and used to set several
variables (and constants) used by OSPF.

Package is the parent class for all packets (IPPackage, OSPFExchangePack-
age, OSPFFloodingPackage, OSPFHelloPackage and RIPPackage). It
holds information about source, destination, type, TTL and content
of the packet.

Paintable is the interface that must be implemented by each object that
should be plotted on the Screen (see figure 4).

PaintMenu is the graphical representation of the tool bar situated at the
left hand side of the IRV–Tool.

Path represents a path, consisting of several nodes and an assigned cost.

Qeue is a simple FIFO (first in first out) queue that is used by Connections
and Routers. Every router has a queue for incoming packets and every
connection one for packets that are to be transmitted by it.

RemoteMenu is the menu for the Simulator (see section A.3.2).

RIPPackage is used to send a DV from one router to another (adjacent
one).

RIPVariableEditPane conforms with OSPFVariableEditPane except that
it is used to modify RIP specific variables (and constants).

Router represents a node in the network that is a router and thus maintains
a routing table.

RouterEditPaneOSPF see HostEditPane.

RouterEditPaneRIP see HostEditPane.

RoutingTable is the interface for all kinds of routing tables (e.g. link state
databases ...).

Screen is the component on which the topology can be drawn and the
simulations can be studied.

11

Simulator is the core of every simulation. All required calculations are
done within the Simulator.

SortedList represents a list of paths that are sorted according to their
costs.

SPFAlgorithm represents the algorithm used by OSPF to calculate a
shortest path.

Splash The splash–screen.

Terminal is a text based command interpreter that can optionally be used
to configure a given topology (see section A.3.7).

TerminalHistory is used to give easy access to commands that are often
used.

TerminalNavigationFilter limits the positions where the curser can be
set within the command line.

Timeline is a simple counter that holds the elapsed time of a simulation.

12

5 RIP In The IRV–Tool

Every time a new DV arrives at a router the following procedure is applied
(pseudo–code):

FOR all entries of the DV DO
distance is distance in entry plus the cost of the connection
IF there is already an entry for the given destination THEN
IF the distance is smaller than in the current entry or the
new one was received from the router THEN
add the entry
IF distance has changed THEN
mark change

END IF
END IF

ELSE
add the entry and mark change

END IF
END FOR
IF a change was marked and ’triggered updates’ is
active THEN
broadcast an update

13

6 OSPF In The IRV–Tool

There are some variables used by OSPF in the IRV–Tool:

HELLO INTERVAL: The number of seconds between two broadcasts of
hello packets to all neighbors.

TIME: The age of a certain link state entry in seconds.

MAXAGE: As soon as TIME equals MAXAGE a link state entry expires
and is removed.

Here is the procedure that is applied in the Simulator as pseudo–code:

FOR every second DO
FOR all nodes that are in the neighbor list DO
IF node did not answer for more than HELLO_INTERVAL
seconds THEN
remove the node from the neighbor list

END IF
END FOR
FOR all elements of the link state table DO
increment TIME
IF TIME >= MAXAGE THEN
remove entry from link state table
and flood removal to all neighbors
IF the entry referred to a neighbor THEN
remove this neighbor from the neighbor list

END IF
END IF

END FOR
FOR all connections of this router DO
IF the connection is down THEN
remove the opposite node from the neighbor list

END FOR
IF HELLO_INTERVAL seconds have passed THEN
broadcast hello packets over all active connections

END FOR

Every time a hello packet arrives at a router:

IF the sender of the packet is not in the neighbor list THEN
add new neighbor to the neighbor list and add the new route
to the link state database.
send a exchange master packet to the sender

ELSE

14

set the time this neighbor did not answer to zero
END IF

Every time an exchange packet arrives at a router:

IF the router was waiting and an initial master packet arrives THEN
IF the address of the sender is less than the address of the
router THEN
solve a possible collision by not answering

END IF
declare to wait for an acknowledgement from the sender and
send itself an initial slave packet

ELSE IF the router was not waiting but an initial master
packet arrives THEN
declare to wait for an acknowledgement from the sender and
send itself an initial slave packet

ELSE IF the router was waiting and an initial slave packet
arrives THEN
declare that this router no longer waits and send the
content of the link state table as a not initial master packet

ELSE IF the router was not waiting and a not initial slave
packet arrives THEN
add the link state information of the packet to the local
link state table
IF all neighbors where found THEN
flood the content of the link state table to all neighbors
except the sender of the above packet

END IF
ELSE IF the router was not waiting and a not initial master
packet arrives THEN
add the link state information of the packet to the local
link state table and send the local link state table to the
master
IF all neighbors where found THEN
flood the content of the link state table to all neighbors
except the sender of the above packet

END IF
END IF

Every time a flooding packet is received:

FOR all entries of the LSA DO
IF source or destination equals this router THEN
ignore update because this router knows better about the

15

local situation
ELSE
IF an entry for the given source and destination already
exists THEN
IF the TIME of the entry is greater than or equals
MAXAGE THEN
always accept the new entry to assure that expired
routes exhale swiftly but do not mark a change

ELSE
IF the current entry is newer than the one received
THEN
do not mark a change

ELSE
add the new entry and mark a change

END IF
END IF

ELSE
IF the TIME of the entry is greater than or equals
MAXAGE THEN
do not mark a change

ELSE
add the new entry and mark a change

END IF
END IF

END FOR
IF a change was marked THEN
flood them to all neighbors except to the sender of the
above flooding packet.

END IF

16

A IRV–Tool Documentation

Author: Christian Sternagel (csac3692@uibk.ac.at)
Program: IRV–Tool version 1.0
LincenseInfo: Open Source (GPL)
Date: 2004-01-12

Copyright c©

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

A.1 Introduction

The IRV–Tool allows to visualize Routing–Settings which could occur e.g.
in the internet. Via the tool it is possible to setup network topologies with
arbitrary complexity in a simple way. Furthermore it approves to accom-
plish various simulations of Routing–Behavior with two different types of
Routing–Protocols (RIP of the distance vector protocol family and OSPF
of the link state protocol family).

The use of the IRV–Tool is easily acquired - thus with minimal effort the
basics of routing can be learned by students.

The following sections describe how to install and use the IRV–Tool
(developed by me for my Baccalaureate–Project).

A.2 Installation

The IRV–Tool can be downloaded as a tar–Archive labeled ’irvtool.tar.gz’
ore as a zip–Archive ’IRVTool.zip’. To extract the archive-file use:

$ tar -xzf irvtool.tar.gz

respectively

$ unzip IRVTool.zip

17

Figure 4: The IRV–Tool

Using windows only double–click on the zip–File to extract its contents.
Now a jar–Archive (’irvtool.jar’), a documentation (irvt-doku.pdf), a sim-
ple example (’simpleexample.irv’), a batch-file (’irvtool.bat’) for Windows as
well as a Shell–Script (’irvtool.sh’) for UNIX, a directory (’license’) contain-
ing license information (’gpl.txt’), a directory (’src’) where the sourcecode
(*.java-files) can be found and this README–File are created in a new di-
rectory called ’IRVTool’.

To start the tool type:

UNIX

$ chmod u+x irvtool.sh # to make ’irvtool.sh’ executable
$ irvtool.sh # to start the IRV-Tool

or

$ java -jar irvtool.jar # if the above command does not work

Windows

> irvtool.bat REM on older versions

18

or

> irvtool.jar REM WindowsXP

or

> java -jar irvtool.jar REM if none of the above commands works

In Windows it is also possible to execute the Tool by clicking on ’irvtool.bat’
(older versions) or ’irvtool.jar’ (WindowsXP).

A.3 Description

A.3.1 A Simple Example

Assume a Network–Topology like in Figure 5.

Figure 5: A Simple Topology

where 1 and 2 are hosts; 3, 4, 5 and 6 are routers and all connections
except 11 (the link connecting router 4 to router 6) have a cost of 1. The
connection 11 has a cost of 2. By means of this simple topology the basics
of RIP should be shown. At first the routing tables contain the following
data:

Router–3: Router–4:
destination cost connection destination cost connection

3 0 local 4 0 local
Router–5: Router–6:
destination cost connection destination cost connection

5 0 local 6 0 local

As we see at this stage the routers only know about themselves. After
the first RIP–Update (in the order: 3, 4, 5, 6) the tables have changed to:

19

Router–3: Router–4:
destination cost connection destination cost connection

3 0 local 4 0 local
1 1 7 2 1 10
5 1 8 5 1 9
6 1 12 6 2 11

Router–5: Router–6:
destination cost connection destination cost connection

5 0 local 6 0 local
1 2 8 1 2 12
2 2 9 2 3 11
3 1 8 3 1 12
4 1 9 4 2 11

After the second RIP–Update at last, the tables contain following data:

Router–3: Router–4:
destination cost connection destination cost connection

3 0 local 4 0 local
1 1 7 !2 1 10
5 1 8 5 1 9
6 1 12 6 2 11
!2 3 8 1 3 11
4 2 8 3 2 9

Router–5: Router–6:
destination cost connection destination cost connection

5 0 local 6 0 local
1 2 8 1 2 12
!2 2 9 2 3 11
3 1 8 3 1 12
4 1 9 4 2 11
6 2 8 5 2 12

Now there exists a path from Host–1 to Host–2 via 3–5–4 (as highlighted
by exclamation marks). This path is chosen at Router–3 because of its
cumulative cost of 3 whereas the path 3–6–4 has a cumulative cost of 4 thus
it is too expensive. At equal cost the order of updates determines the result.
The above example can be visualized with the IRV–Tool. For that purpose
the file ’simpleexample.irv’ is needed (if you don’t want to design the given
topology by yourself). By simulating that file you can also observe how
RIP responds to a modification in the topology. In ’simpleexample.irv’ the
connection 8 goes down from second 50 to second 70.

20

A.3.2 The User Interface

In terms of the IRV–Tool a network consists of hosts (symbol: computer with
screen), routers (symbol: tower) and connections (symbol: network cable)
which connect two nodes respectively. Here, the term node denotes hosts as
well as routers. Hosts can only possess a single connection to a single router
and cannot be connected among each other. Routers can possess arbitrary
connections to arbitrary nodes. The toolbar on the left hand side serves
to design and edit a topology quickly. There are following control elements
(top down; see also Figure 6):

Figure 6: The Tools

Marker–Tool: Used to select (and afterwards delete with DEL) a single
node or connection or to move several nodes together with all connec-
tions attached to them.

Remove–Tool: Used to remove several nodes and all connections attached
to them by enframing them with pressed left mouse button and re-
leasing the button when ready.

Host–Tool: Used to place a host on the drawing area.

Router–Tool: Used to place a router on the drawing area.

Connection–Tool: Used to connect two nodes to each other.

Edit–Tool: Used to look at and/or modify properties of any entity (node
or connection). Instead of the Edit–Tool the right mouse button can
be used as well.

The toolbar below controls all facets of simulations within the IRV–Tool.
By modifying ’speed’ the execution speed can be adjusted. At ’timeline’ the
current point in time is recorded (with seconds as unit). By modifying this
value and clicking ’apply’ the simulation can be moved to the given point
in time (WARNING: going backwards in time is not possible, because the
simulation is not deterministic concerning user input). Clicking ’play’ starts
a simulation. Within a simulation RIP–Packets are red and standard IP-
Packets are green. ’pause’ pauses a simulation and ’stop’ aborts it while
newly initializing all routing-tables (thus it is necessary to reopen a used
*.irv–File for receiving Table–Entries as stored to the file).

21

Figure 7: Host–Edit–Dialog

A.3.3 Edit Options

Hosts: The Host–Edit–Dialog (see Figure 7) allows to modify the address
(only unambigous addresses are valid), the destination to which packets are
sent (0 means ’no destination’), the content of messages from this host (de-
fault: ’hallo’), the acceleration time for sending IP-Packets (preconditioned
that a destination was set) and the periodicity (every ’cylce’ seconds) of
these sendings. Moreover the connection to which this host is connected is
listed.

Figure 8: Router–Edit–Dialog (left: RIP, right: OSPF

Routers: The Router–Edit–Dialog (see 8) allows to modify the address,
the acceleration time for updates (-1 means ’never’) and their periodicity
(only for RIP; RIP–Default is 30 seconds). Also the Routing–Table of this
router can be observed and modified.

Connections: The Connection–Edit–Dialog (see Figure 9) allows to mod-
ify the address and the cost (default value: 1). Via the cost the distance
between to nodes is calculated. If there are two nodes connected by a sin-
gle connection with cost 5, then these nodes are 5 units away from each

22

Figure 9: Connection–Edit–Dialog

other (unless there is another path between these two nodes with minor
cost). Additionally there is a list of tuples of points in time in the manner
(MIN, MAX) for each connection. Within this list any number of entries
can be stored, indicating from which point in time (MIN) to which other
(MAX) this connection should be down (interrupted connections are dis-
played dashed). Connections that are down behave in a manner as if they
do not exist.

A.3.4 Saving A Topology As A Bitmap

By choosing ’Save As ...’ from the File–Menu and adjusting the combobox
’Files of Type:’ to ’*.jpg files’ it is possible, to save a topology as a bitmap
(JPEG–Format). It must be pointed out that the size (width and height
in pixels) of the bitmap depends on the portion of the network visible on
the screen. In other words the whole visible canvas (the widget on which
the painting is done) is saved as bitmap. Thus by changing the size of the
Main–Window it is possible to control the size of the resulting bitmap.

A.3.5 Options

There are several options intended for controlling the exact behavior of rout-
ing in a given network (topology). First of all there are to Routing–Protocols
that can be chosen.

RIP – Routing Information Protocol: This is the first and simpler
protocol that can be chosen. More exhaustive information on RIP can be
achieved from [2] and [1] or in minor complexity from the documentation of
the IRV–Tool. At this point it is worth mentioning that RIP is a member of
the Distance–Vector–Protocol–Family (DVP). Thus a distributed algorithm
is used to calculate information about ’best’ paths. Information is spread

23

across the network by sending Distance–Vectors (DVs) to direct neighbors.
These DVs consist of triples [to, cost, via], one for each destination node.

Settings: Currently implemented are three optional features as exten-
sion of RIP all based on existing features described in [2] and [1]. Thereby
it concerns notably:

• Triggered Updates

• Split Horizon

• Split Horizon with poisonous Reverse

RIP Variables: There are also three variables that can be set for the
RIP. By name:

The Garbage–Collection–Timer: Number of seconds an entry of a rout-
ing table should be kept after it has exceeded its validity.

Infinity: The number that should be treated as infinity.

Timer: Number of seconds a newly registered entry is valid without further
acknowledgements.

After starting the IRV–Tool all these variables are set to default values
like mentioned in [2] and [1].

OSPF – Open Shortest Path First: The second protocol is the OSPF
protocol. As OSPF is a member of the Link–State–Protocol-family (LSP)
every node holds a table (the so called ’link state table’) containing infor-
mation about the whole topology. That is the reason why every node can
calculate the best path locally. OSPF is much more complex than RIP.
Changes in the topology are advanced by a Flooding–Protocol that is part
of OSPF and sends Link–State–Advertisments (LSA) across the network.

Settings: There is only one feature currently implemented:

Equal-cost Multipath (see [3]): This feature makes it possible to use
more than one path if there are multiple paths between source and
destination that have the same cost.

24

OSPF Variables: Four variables can be set for OSPF. By default they
have values like in [3]. The variables are:

Hello–Interval: Number of seconds between checks for new or lost Neigh-
bors.

Maximal-Age: The maximal age in seconds of a table entry befor it is
discarded.

Maximal–Age–Difference: If an LSA with same sequencenumbers as the
existing LSA arrives at a node it is always accepted in the case its age
equals Maximal–Age. If the ages of the LSAs differ by more than
Maximal–Age–Difference the LSA with the smaller age is considered
as most recent otherwise the old one is kept.

Infinity: This number is used in the Lollipop–Algorithm (see [1]).

A.3.6 Simulating With The IRV–Tool

After designing a topology by arranging nodes and connection on the ’Can-
vas’ a simulation can be started by pressing the ’Play’ button. With ’Pause’
it is possible to break a simulation and later resume it. And ’Stop’ at last
discards a simulation by setting all routing tables to their default values and
the time to zero. To make a simulation faster it is possible to go forward in
time by choosing the desired point in time and clicking ’Apply’. The clock
(in the lower right corner of the IRV–Tool) can be switched between two
modes by clicking on it. By default it shows the elapsed time in seconds.
But it is also possible to show the time in the format ’hh:mm:ss’.

ATTENTION: After clicking ’Stop’ all routing tables are empty, so it is
necessary to reload a *.irv–File (by opening it from File→Open) to get the
assignments of the routing tables that were saved to the file.

A.3.7 The Terminal

The Terminal is more in its test stage than completed nevertheless all de-
scribed commands are fully functional (besides ’sleep’ which only works
correct if you let run the simulator with animation but not if you jump to
a point of time by using ’Apply’). Some things that are very tedious with-
out the Terminal (e.g. configuration of multiple nodes and connections) can
be easily achieved by using the Terminal. First of all the Terminal only
responds to user input if a simulation has been started (The ’Play’ button
was pressed without pressing ’Stop’ afterwards). By using the Arrow–Keys
(Arrow–Up and Arrow–Down) it is possible to access the Command–History
of the Terminal (UNIX shell alike). Following commands are supported:

25

broadcast: you have to be logged in at a router
Syntax:

broadcast

When using RIP the RIP–Update of the current router is sent to all
adjacent nodes. When using OSPF an OSPF–Hello–Packet is sent to
each adjacent router.

clear: Syntax:

clear

Clears the Output–TextField of the IRV–Tool.

echo: Syntax:

echo <text>

Displays the specified text (terminated with a newline).

exit: Syntax:

exit

Closes the IRV–Tool.

help: Syntax:

help

Displays a list of all commands.

login: Syntax:

login <address-of-a-node>

Some commands can only be used if you are logged in at a node.
When logged in a node, the prompt shows the address of this node.
E.g. ’[1]$’.

26

logout: Syntax:

logout

After logout, you are not logged in any node. The prompt shows
’[none]$’.

ls (list): Syntax:

ls <address-of-an-entity>

All properties of an entity (node or connection) are listed.

ping: you have to be logged in
Syntax:

ping <address-of-a-node>

A Ping-Packet is sent from the node you are logged in to the node spec-
ified by <address–of–a–node>. The destination returns a Pong–Packet
to the sender and a message is displayed on the Output–TextField.

route: Syntax:

route <address-of-a-router>

Displays the Routing–Table of the specified router.

run: Syntax:

run <path-of-script-file>

Executes the specified Script–File (see A.3.7).

send: you have to be logged in
Syntax:

send <address-of-a-node> [<message>]

27

Sends a packet from the current node to the node specified. The
optional parameter <message> specifies a text-string to send. This
String is displayed when the packet arrives at the destination.

set: used for nodes when logged in, otherwise for connections
Syntax for connections:

set <addr> {address | clear | cost | down | remove} [<value>]
address ... set the address of connection <addr> to <value>
clear ... clear the list of Link-Failures from the connection
cost ... set the cost of the connection to <value>
down ... add a Link-Failure to the list where <value> is a

pair of timestamps (separated by a blank) that
specify from when to when the failure should occure

remove ... remove a Link-Failure specified by a pair of
timestamps

Syntax for routers:

set address <new-addr>

Syntax for hosts:

set {address | cycle | destination | message | start} <valuet>
Sets the specified property of the current host to the value
<value>.

sleep: Syntax:

sleep <secondst>

Should only be used in Script–Files.

traceroute: you have to be logged in
Syntax:

traceroute <address-of-a-node>

Like the UNIX command ’traceroute’. A list of all nodes situated on
the path between source and destination is displayed.

28

Running Script Files: With the ’run’ command it is possible to execute
ASCII–Files holding Terminal-commands. In addition there are some more
options (’#’ starts a comment until the end of the line):

repeat: Syntax:

repeat <times>
arbitrary code

;;

Repeats the code between <times> and ’;;’ <times> times.

for: Syntax #1:

for all {connections | hosts | nodes | routers}
arbitrary code

;

Repeats the code between the line with the for–command and ’;’ for all
nodes (or connections or hosts ...; as specified). Within the for–block,
the keyword ’this’ can be used to access the current entity.

Syntax #2:

for {connections | hosts | nodes | routers} <address-list>
arbitrary code

;

Where <address–list> is a (blank separated) list of addresses.

For can be used within repeat, but not vice versa. To make the use of
Script–Files more clearly here is an example.

01 # this is a comment
02 repeat 10
03 for all routers
04 broadcast
04 ;
05 sleep 10
06 ;;

The above example shows a script that causes all routers to broadcast
10 times in succession and make a pause of 10 seconds between each time.
This is another example:

29

01 clear
02 for all connections
03 echo i am connection this
04 ls this
05 ;
06 for routers 2 4 6
07 echo i am router this
08 route this
09 ;

Here all connections display their names and their properties after clear-
ing the screen. Then the routers 2, 4 and 6 display their routing tables.

30

References

[1] C. Huitema, Routing in the Internet, 2nd ed. Prentice Hall, 2000.

[2] C. Hedrick, RFC 1058 - Routing Information Protocol. Rutgers Univer-
sity, 1988.

[3] J. Moy, RFC 2328 - OSPF Version 2. Ascend Communications, Inc.,
1998.

31

